首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   1篇
  42篇
  2023年   1篇
  2020年   2篇
  2019年   7篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   7篇
  2009年   2篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  1990年   1篇
排序方式: 共有42条查询结果,搜索用时 15 毫秒
1.
Ajania semnanensis (Compositae: Anthemideae), a new species of Ajania from northeast of Iran, Semnan province, is described and illustrated. Ajania semnanensis is a suffruticose perennial growing on rocky and stony slopes of mountains at altitudes of 1500–2800 m a.s.l. Karyological and micromorphological data of the pollen and achenes, as well as a distribution map for the species are provided. The cytotype of the species was found to be diploid (2n = 2x = 18) based on x = 9. The karyotype formula is 2n = 2x = 4M + 6m + 6sm + 2st. Pollen grains of A. semnanensis are prolate‐spheroidal (P/E = 1.1), 3‐zonocolporate and echinate (Anthemis type). The achenes of A. semnanensis are obovate, 1.0–1.5 × 0.5–0.6 mm, light brown, with 4–6 fine and inconspicuous ribs, glabrous, without pappus and with a subbasal carpopodium. The IUCN status of the new species is suggested to be ‘Least Concern’ (LC).  相似文献   
2.
To evaluate the chemotaxonomic significance of the essential oils of 23 populations of 18 Iranian Ferula species, the chemical composition of the oils was investigated by GC/FID and GC/MS. Altogether, 84 constituents, representing 81.3-99.7% of the total composition of the oils, have been identified. The composition of six species of the genus, i.e., F. oopoda, F. foetida, F. behboudiana, F. diversivittata, F. galbaniflua, and F. hezarlalehzarica, has been reported for the first time. The main constituents identified were α-terpinyl acetate (73.3%), 2,3,4-trimethylthiophene (2; 49.0%), sabinene (75.3%), verbenone (5; 69.4%), β-pinene (59.0-66.3%), and (Z)-β-ocimene (41.7%). Cluster analysis (CA) of the percentage content of the essential oil components of the Ferula species resulted in the characterization of four groups, i.e., taxa containing either i) monoterpene hydrocarbons, ii) oxygenated monoterpenes, iii) organosulfur compounds, or iv) monoterpene, sesquiterpene, and aliphatic hydrocarbons as the principal classes of compounds. Based on the results obtained, the chemical independence of F. hirtella from F. szowitsiana and of F. galbaniflua from F. gummosa at the specific level was concluded and their positions as distinct species were confirmed. The chemotaxonomic relationships among the representatives of the genus Ferula have been discussed in detail.  相似文献   
3.
The predatory midge Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae) is widely used for the control of Aphis spp. in many agricultural systems. We aimed to determine the most suitable host plant for rearing the predatory midges on the prey Aphis gossypii Glover (Hemiptera: Aphididae). Six host plants were selected: cucumber (Cucumis sativus L. cv. Beith Alpha), tomato (Solanum lycopersicum L. cv. Falat111), eggplant (Solanum melongena L. cv. Yummy), pepper (Capsicum annuum L. cv. Bertene) (all Solanaceae), okra [Abelmoschus esculentus (L.) Moensch cv. Clemson Spineless] (Malvaceae), and squash (Cucurbita pepo L. cv. Hybrid rajai) (Cucurbitaceae). Some physical traits (length and density of trichomes) and chemical attributes (nitrogen content) of prey host plants were investigated. The results showed that prey host plants differed significantly in their effect on fitness of the predator. The shortest immature development time (18.07 ± 0.257 days), the longest female adult longevity (7.5 ± 0.18 days), and the highest fecundity (89 eggs/female) of A. aphidimyza were found with squash as prey food. The highest intrinsic rate of increase (0.171 ± 0.009 day?1) and also the shortest mean generation time (22.4 ± 0.32 days) were also obtained when A. aphidimyza fed on A. gossypii reared on squash. Canonical correlation analysis (CCA) approved the correlation between life‐history traits of A. aphidimyza and characteristics of prey host plants. The suitability of squash for rearing A. aphidimyza can be attributed to the higher nitrogen content, longer trichomes, and relatively high density of trichomes, which provided a better environment for A. gossypii and indirectly favored A. aphidimyza. This study showed that squash is the most suitable host plant for rearing A. aphidimyza feeding on A. gossypii.  相似文献   
4.
Efficient oxidation of Hantzsch 1,4-dihydropyridines to their corresponding pyridine derivatives with (Bu(4)N)IO(4) catalyzed by tetraphenylporphyrinatomanganese(III) chloride [Mn(TPP)Cl] is reported. This catalytic system shows high efficiency in the oxidation of 1,4-dihydropyridines at room temperature in the presence of imidazole.  相似文献   
5.
Mild and efficient oxidation of Hantzsch 1,4-dihydropyridines with sodium periodate catalyzed by Mn(TTP)Cl supported on polystyrene-bound imidazole is reported. This heterogeneous catalyst is of great stability and reusability in the oxidation of 1,4-dihydropyridines with sodium periodate without significant loss of its catalytic activity.  相似文献   
6.
The phylogenetic status of the monotypic genus Vavilovia was studied using nrDNA ITS and cpDNA trnL-F and trnS-G regions. The results from the analysis of each dataset and the combined dataset, revealed that Vavilovia is closely related to Pisum, forming a group that is sister to Lathyrus. The molecular data and some morphological and biological characteristics strongly indicate that Vavilovia should be subsumed under Pisum, as Pisum formosum.  相似文献   
7.
In this report, highly efficient oxidative decarboxylation of carboxylic acids with sodium periodate catalyzed by a supported manganese(III) porphyrin is described. In the presence of manganese(III) tetra(4-pyridyl)porphyrin supported on cross-linked chloromethylated polystyrene, [Mn(T4PyP)-CMP], as catalyst, carboxylic acids were converted to their corresponding carbonyl compounds via oxidative decarboxylation with sodium periodate using imidazole as axial ligand. The oxidation of anti-inflammatory drugs such Indomethacin and Ibuprofen was carried out successfully and the decarboxylated products were obtained. This catalyst can be reused several times without loss of its catalytic activity in the oxidation reactions.  相似文献   
8.
Rapid and efficient oxidative decarboxylatoin of alpha-aryl carboxylic acids was observed. In the chemical system containing Mn(III)-salophen complex as catalyst, carboxylic acids are converted efficiently to the corresponding carbonyl derivatives with sodium periodate. The ability of various Schiff base complexes in the oxidative decarboxylation of carboxylic acids was also investigated.  相似文献   
9.
Rapid and efficient oxidation of Hantzsch 1,4-dihydropyridine with sodium periodate is reported. The Mn(III)-salophen/NaIO4 catalytic system converts 1,4-dihydropyridines to their corresponding pyridine derivatives at room temperature in a 1:1, CH3CN/H2O mixture. The ability of various Schiff base complexes in the oxidation of 1,4-dihydropyridine was also investigated.  相似文献   
10.
A novel amino acid supplementation strategy was developed for enhancing the production of IL-2 (interleukin-2; as a model protein) by recombinant Escherichia coli BL21 (pET21a-hil2) in fed-batch high-cell-density cultures. The amino acids most needed and their amounts were determined using a stoichiometric model, and full factorial design experiments were conducted to determine the effects of single amino acids and amino acid mixtures on production. One of the most effective amino acid mixtures was found to be leucine, aspartic acid and glycine. This amino acid mixture was utilized for the production of IL-2 in batch and fed-batch fermentations. The amount of IL-2 produced increased from 403 to 722 mg/l and from 5.15 × 103 to 8.08 × 103 mg/l in batch and fed-batch cultures respectively. The results also revealed that the above amino acid mixture specifically increases IL-2 concentration in the cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号