排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
VADIM FEDOROV ANNA GOROPASHNAYA GORDON H. JARRELL KARL FREDGA 《Biological journal of the Linnean Society. Linnean Society of London》1999,66(3):357-371
The geographic pattern of mtDNA variation in lemmings from 13 localities throughout the Eurasian Arctic was studied by using eight restriction enzymes and sequencing of the cytochrome b region. These data are used to reveal the vicariant history of Lemmus , and to examine the effect of the last glaciation on mtDNA variation by comparing diversity in formerly glaciated areas to the diversity in non-glaciated areas. Phylogenetic congruence across different Arctic taxa and association between observed discontinuities, and probable Pleistocene barriers, suggest that glacial-interglacial periods were crucial in the vicariant history of Lemmus. Differences in amount of divergence (2.1–9.1%) across different historical barriers indicate chronologically separate vicariant events during the Quaternary. Populations from a formerly glaciated area are no less variable than those in the non-glaciated area. Regardless of glaciation history, no population structure and high haplotype diversity were found within geographic regions. The lack of population structure indicates that populations with high ancestral haplotype diversity shifted their distribution during the Holocene, and that lemmings tracked a changing environment during the Quaternary without reduction of effective population size. 相似文献
2.
3.
4.
ALEXANDRE BOSCARI MATHILDE CLÉMENT † VADIM VOLKOV DORTJE GOLLDACK JOLANTA HYBIAK ANTHONY J. MILLER ANNA AMTMANN & WIELAND FRICKE 《Plant, cell & environment》2009,32(12):1761-1777
It is not known how the uptake and retention of the key osmolyte K+ in cells are mediated in growing leaf tissue. In the present study on the growing leaf 3 of barley, we have cloned the full-length coding sequence of three genes which encode putative K+ channels ( HvAKT1 , HvAKT2 , HvKCO1 / HvTPK1 ), and of one gene which encodes a putative K+ transporter ( HvHAK4 ). The functionality of the gene products of HvAKT1 and HvAKT2 was tested through expression in Xenopus laevis oocytes. Both are inward-rectifying K+ channels which are inhibited by Cs+ . Function of HvAKT1 in oocytes requires co-expression of a calcineurin-interacting protein kinase ( At CIPK23) and a calcineurin B-like protein (AtCBL9) from Arabidopsis , showing cross-species complementation of function. In planta , HvAKT1 is expressed primarily in roots, but is also expressed in leaf tissue. HvAKT2 is expressed particularly in leaf tissue, and HvHAK4 is expressed particularly in growing leaf tissue. Within leaves, HvAKT1 and HvAKT2 are expressed predominantly in mesophyll. Expression of genes changes little in response to low external K+ or salinity, despite major changes in K+ concentrations and osmolality of cells. Possible contributions of HvAKT1 , HvAKT2 , HvKCO1 and HvHAK4 to regulation of K+ relations of growing barley leaf cells are discussed. 相似文献
5.
VADIM VOLKOV ALEXANDRE BOSCARI MATHILDE CLÉMENT † ANTHONY J. MILLER ANNA AMTMANN & WIELAND FRICKE 《Plant, cell & environment》2009,32(12):1778-1790
Potassium is a major osmolyte used by plant cells. The accumulation rates of K+ in cells may limit the rate of expansion. In the present study, we investigated the involvement of ion channels in K+ uptake using patch clamp technique. Ion currents were quantified in protoplasts of the elongation and emerged blade zone of the developing leaf 3 of barley ( Hordeum vulgare L.). A time-dependent inward-rectifying K+ -selective current was observed almost exclusively in elongation zone protoplasts. The current showed characteristics typical of Shaker-type channels. Instantaneous inward current was highest in the epidermis of the emerged blade and selective for Na+ over K+ . Selectivity disappeared, and currents decreased or remained the same, depending on tissue, in response to salt treatment. Net accumulation rates of K+ in cells calculated from patch clamp current–voltage curves exceeded rates calculated from membrane potential and K+ concentrations of cells measured in planta by factor 2.5–2.7 at physiological apoplastic K+ concentrations (10–100 m m ). It is concluded that under these conditions, K+ accumulation in growing barley leaf cells is not limited by transport properties of cells. Under saline conditions, down-regulation of voltage-independent channels may reduce the capacity for growth-related K+ accumulation. 相似文献
6.
ALEXANDER G. VOLKOV JUSTIN C. FOSTER VLADISLAV S. MARKIN 《Plant, cell & environment》2010,33(5):816-827
Biologically closed electrical circuits operate over large distances in biological tissues. The activation of such circuits can lead to various physiological and biophysical responses. Here, we analyse the biologically closed electrical circuits of the sensitive plant Mimosa pudica Linn. using electrostimulation of a petiole or pulvinus by the charged capacitor method, and evaluate the equivalent electrical scheme of electrical signal transduction inside the plant. The discharge of a 100 µF capacitor in the pulvinus resulted in the downward fall of the petiole in a few seconds, if the capacitor was charged beforehand by a 1.5 V power supply. Upon disconnection of the capacitor from Ag/AgCl electrodes, the petiole slowly relaxed to the initial position. The electrical properties of the M. pudica were investigated, and an equivalent electrical circuit was proposed that explains the experimental data. 相似文献
7.
ALEXANDER G. VOLKOV JUSTIN C. FOSTER TALITHA A. ASHBY RONALD K. WALKER JON A. JOHNSON VLADISLAV S. MARKIN 《Plant, cell & environment》2010,33(2):163-173
Thigmonastic movements in the sensitive plant Mimosa pudica L., associated with fast responses to environmental stimuli, appear to be regulated through electrical and chemical signal transductions. The thigmonastic responses of M. pudica can be considered in three stages: stimulus perception, electrical signal transmission and induction of mechanical, hydrodynamical and biochemical responses. We investigated the mechanical movements of the pinnae and petioles in M. pudica induced by the electrical stimulation of a pulvinus, petiole, secondary pulvinus or pinna by a low electrical voltage and charge. The threshold value was 1.3–1.5 V of applied voltage and 2 to 10 µC of charge for the closing of the pinnules. Both voltage and electrical charge are responsible for the electro‐stimulated closing of a leaf. The mechanism behind closing the leaf in M. pudica is discussed. The hydroelastic curvature mechanism closely describes the kinetics of M. pudica leaf movements. 相似文献
8.
Logistics of water and salt transport through the plant: structure and functioning of the xylem 总被引:8,自引:3,他引:8
The xylem is a long‐distance transport system that is unique to higher plants. It evolved into a very sophisticated plumbing system ensuring controlled loading/unloading of ions and water and their effective translocation to the required sinks. The focus of this overview will be the intrinsic inter‐relations between structural and functional features of the xylem. Taken together the xylem is designed to prevent cavitation (entry of air bubbles), induced by negative pressures under transpiration and to repair the cavitated vessels. Half‐bordered pits between xylem parenchyma cells and xylem vessels are on the one hand the gates to the vessels but on the other hand a serious ‘bottle‐neck’ for transport. Hence it becomes evident that special transport systems exist at the interface between the cells and vessels, which allow intensive fluxes of ions and water to and out of the xylem. The molecular identification and biophysical/biochemical characterization of these transporters has just started. Paradigms for the sophisticated mechanism of controlled xylem transport under changing environmental conditions are SKOR, a Shaker‐like channel involved in K+‐loading and SOS1, a Na+/H+ antiporter with a proposed dual function in Na+ transport. In view of the importance of plant water relations it is not surprising to find that water channels dominate the gate of access to xylem. Future studies will focus on the mechanism(s) that regulate water channels and ion transporters and on their physiological role in, for example, the repair of embolism. Clearly, progress in this specific field of research will greatly benefit from an integration of molecular and biophysical techniques aimed to understand ‘whole‐plant’ behaviour under the ever‐changing environmental conditions in the daily life of all plants. 相似文献
9.
ANDREW G. HOPE ERIC WALTARI VADIM B. FEDOROV ANNA V. GOROPASHNAYA SANDRA L. TALBOT JOSEPH A. COOK 《Molecular ecology》2011,20(20):4346-4370
Environmental processes govern demography, species movements, community turnover and diversification and yet in many respects these dynamics are still poorly understood at high latitudes. We investigate the combined effects of climate change and geography through time for a widespread Holarctic shrew, Sorex tundrensis. We include a comprehensive suite of closely related outgroup taxa and three independent loci to explore phylogeographic structure and historical demography. We then explore the implications of these findings for other members of boreal communities. The tundra shrew and its sister species, the Tien Shan shrew (Sorex asper), exhibit strong geographic population structure across Siberia and into Beringia illustrating local centres of endemism that correspond to Late Pleistocene refugia. Ecological niche predictions for both current and historical distributions indicate a model of persistence through time despite dramatic climate change. Species tree estimation under a coalescent process suggests that isolation between populations has been maintained across timeframes deeper than the periodicity of Pleistocene glacial cycling. That some species such as the tundra shrew have a history of persistence largely independent of changing climate, whereas other boreal species shifted their ranges in response to climate change, highlights the dynamic processes of community assembly at high latitudes. 相似文献
10.
Thellungiella halophila is a salt‐tolerant close relative of Arabidopsis thaliana. Significant mRNA similarity was confirmed by hybridization of T. halophila mRNA with the A. thaliana GeneChip ATH1. To establish a platform for future molecular comparison of the two species several physiological mechanisms, which may confer high salt tolerance to T. halophila, were investigated. Determination of ion content in shoots and roots of A. thaliana and T. halophila indicated different strategies of ion uptake and translocation from root to shoot in the two species. During salt stress T. halophila accumulated less sodium than A. thaliana. Tissue concentrations of sodium and potassium showed negative correlation in A. thaliana but not in T. halophila. Electrophysiological experiments proved high potassium/sodium selectivity of root plasma membrane channels in T. halophila. In particular, voltage‐independent currents were more selective for potassium in T. halophila than in A. thaliana. Single cell sampling of T. halophila leaves during salt exposure revealed increased concentrations of sodium and decreased concentrations of potassium in epidermal cells suggesting that this cell type could function to ensure storage of sodium and exchange of potassium with the rest of leaf. Application of salt resulted in a sharp drop of transpiration in A. thaliana. By contrast, transpiration in T. halophila responded more slowly and was only slightly inhibited by salt treatment, thus maintaining high water uptake and ion transport. 相似文献
1