Inflation-extension experiments were carried out on segments of the descending thoracic aortas from 4 normotensive and 4 hypertensive dogs rendered hypertensive using either unilateral or bilateral renal artery constriction. Intravascular pressures up to 200 mm Hg and axial forces up to 200 g were used. The external diameter of the segment and the distance between two longitudinally spaced gage marks were recorded photographically at each pressure-force level combination. Dimensions in the underformed configuration were measured at the end of the inflation-extension experiment. Data were analyzed for changes in geometry and force-deformation response. Results indicate that: 1. Under sustained hypertension the wall thickness in the underformed configuration increases with a concurrent reduction in the in-situ longitudinal extension ratio. 2. This dual tissue response accomplishes substantial reductions in the circumferential and longitudinal stresses from the levels that would be reached at equivalent pressures in the absence of these geometric changes. 3. At comparable intravascular pressures the extensibility in the circumferential direction is slightly greater for the hypertensive aortas as compared to normals. However, the stress-extension ratio relationship in the circumferential direction is similar in the two groups. 4. The stress-extension ratio relationship in the longitudinal direction indicates that the hypertensive aorta is stiffer than its normotensive counterpart. 相似文献
SP600125, an anthrapyrazolone inhibitor of c-jun N-terminal kinase (JNK), has been used to characterize the role of JNK in apoptotic pathways. In this study, we have demonstrated an additional novel anti-apoptotic action of this inhibitor in MIN6 cells, a mouse beta cell line. SP600125 induced CREB-dependent promoter activation by 2.8-fold at 20 microM, the concentration at which it inhibited c-jun-dependent promoter activation by 51%. There was a significant (P<0.01) increase in CREB phosphorylation (serine 133) at 5 min, which persisted for a period of 2h. Examination of signaling pathways upstream of CREB showed a 2.5-fold increase in the active phospho form of p38 MAPK. This finding was further confirmed by an in vitro kinase assay using ATF-2 as substrate. SB203580, an inhibitor of p38 MAPK, partially blocked SP600125-mediated activation of CREB. These observations suggest that SP600125 could be used as a small molecular weight activator of CREB. 相似文献
A laboratory study of the hydrostatic collapse of diseased tibial arteries demonstrated hysteresis in the pressure-flow behaviour which resembled that seen in the stress-strain relations of the arterial tissue. The pressures at which the vessels collapsed were found to be considerably lower than expected on the basis of theoretical elastic models. Also, the pressures at which the vessels reopened were consistently lower than the pressures at which they collapsed. These findings were explained on the basis of viscoelasticity. The difference between collapse and opening pressure may provide insight into the mechanical properties of vessels, and a clue to errors in non-invasive measurements of blood pressure which depend upon collapse of arteries. 相似文献
Truncated Notch receptors have transforming activity in vitro and in vivo. However, the role of wild-type Notch signaling in neoplastic transformation remains unclear. Ras signaling is deregulated in a large fraction of human malignancies and is a major target for the development of novel cancer treatments. We show that oncogenic Ras activates Notch signaling and that wild-type Notch-1 is necessary to maintain the neoplastic phenotype in Ras-transformed human cells in vitro and in vivo. Oncogenic Ras increases levels and activity of the intracellular form of wild-type Notch-1, and upregulates Notch ligand Delta-1 and also presenilin-1, a protein involved in Notch processing, through a p38-mediated pathway. These observations place Notch signaling among key downstream effectors of oncogenic Ras and suggest that it might be a novel therapeutic target. 相似文献
Tobacco mosaic virus (TMV), a widespread plant pathogen, is found in tobacco (including cigarettes and smokeless tobacco) as well as in many other plants. Plant viruses do not replicate or cause infection in humans or other mammals. This study was done to determine whether exposure to tobacco products induces an immune response to TMV in humans. Using a sandwich ELISA assay, we detected serum anti-TMV antibodies (IgG, IgG1, IgG3, IgG4, IgA, and IgM) in all subjects enrolled in the study (20 healthy smokers, 20 smokeless-tobacco users, and 20 non-smokers). Smokers had a higher level of serum anti-TMV IgG antibodies than non-smokers, while the serum level of anti-TMV IgA from smokeless tobacco users was lower than smokers and non-smokers. Using bioinformatics, we also found that the human protein TOMM40L (an outer mitochondrial membrane 40 homolog – like translocase) contains a strong homology of six contiguous amino acids to the TMV coat protein, and TOMM40L peptide exhibited cross-reactivity with anti-TMV antibodies. People who smoke cigarettes or other tobacco products experience a lower risk of developing Parkinson’s disease, but the mechanism by which this occurs is unclear. Our results showing molecular mimicry between TMV and human TOMM40L raise the question as to whether TMV has a potential role in smokers against Parkinson’s disease development. The potential mechanisms of molecular mimicry between plant viruses and human disease should be further explored. 相似文献
Soil salinity is a major limiting factor for crop productivity worldwide and is continuously increasing owing to climate change. A wide range of studies and practices have been performed to induce salt tolerance mechanisms in plants, but their result in crop improvement has been limited due to lack of time and money. In the current scenario, there is increasing attention towards habitat-imposed plant stress tolerance driven by plant-associated microbes, either rhizospheric and/or endophytic. These microbes play a key role in protecting plants against various environmental stresses. Therefore, the use of plant growth-promoting microbes in agriculture is a low-cost and eco-friendly technology to enhance crop productivity in saline areas. In the present review, the authors describe the functionality of endophytic bacteria and their modes of action to enhance salinity tolerance in plants, with special reference to osmotic and ionic stress management. There is concrete evidence that endophytic bacteria serve host functions, such as improving osmolytes, anti-oxidant and phytohormonal signaling and enhancing plant nutrient uptake efficiency. More research on endophytes has enabled us to gain insights into the mechanism of colonization and their interactions with plants. With this information in mind, the authors tried to solve the following questions: (1) how do benign endophytes ameliorate salt stress in plants? (2) What type of physiological changes incur in plants under salt stress conditions? And (3), what type of determinants produced by endophytes will be helpful in plant growth promotion under salt stress?
Corticotropin-releasing hormone (Crh) plays an important role in modulating physiological and behavioral responses to stress. Its actions are mediated through two receptors, Crhr1 and Crhr2. Urocortin (Ucn), a Crh-related neuropeptide and the postulated endogenous ligand for Crhr2, is a potential mediator of stress responses. We generated Ucn-deficient mice using embryonic stem cell technology to determine its role in stress-induced behavioral and autonomic responses. Unlike Crhr1- or Crhr2-deficient mice, Ucn-deficient mice exhibit normal anxiety-like behavior as well as autonomic regulation in response to stress. However, the mutant mice display an impaired acoustic startle response that is not due to an obvious hearing defect. Thus, our results suggest that Ucn does not play an essential role in stress-induced behavioral and autonomic responses. Ucn may modulate the acoustic startle response through the Ucn-expressing neuron projections from the region of the Edinger-Westphal nucleus. 相似文献
Secondary metabolites have been found to have interesting applications over and above their well-known medical uses, e.g., as antimicrobials, etc. These alternative applications include antitumor, cholesterol-lowering, immunosuppressant, antiprotozoal, antihelminth, antiviral and anti-ageing activities. Polyene antibiotics, such as amphotericin B, are of use as antiprion agents, antitumor drugs and against leishmaniasis. Other microbial natural products that show antibiotic activity are used against cancer e.g., doxorubicin, neomycin, β-lactams, bleomycin and rapamycin. Macrolide antibiotics, such as erythromycin, clarithromycin and azithromycin, improve pulmonary function in patients suffering from panbion cholitis. Pigments like prodigiosin and shikonin have antitumor activity, while violacein has anti-ulcer and antitumor activity and also acts as an antiprotozoal agent. Statins, in addition to lowering cholesterol and LDL levels, also decrease elevated C-reactive protein (CRP) levels independent of their cholesterol effects. Immunosppressants have many alternative effects: (i) Cyclosporin is proving useful in treatment of inflammatory disease such as asthma and muscular dystrophy. (ii) Rapamycin is extremely useful in preventing restenosis of stents grafted in balloon angioplasty. (iii) Tacrolimus and ascomycin help in treating inflammatory skin disease such as allergic contact dermatitis and psoriasis. Artemisinin, an antimalarial agent, is also showing antitumor activity. Other natural products, including those from plants (betulinic acid and shikonin), animals (bryostatins) and microbes (squalestatin and sophorolipids) have a multiplicity of potentially useful actions. Unexpected functions of known secondary metabolites are continuously being unraveled, and are fulfilling some of the needs of present day medicine and show great promise for the future. 相似文献
Despite abundant library resources for many organisms, physical mapping of these organisms has been seriously limited due to lack of efficient library screening techniques. We have developed a highly efficient strategy for large-scale screening of genomic libraries based on multiplex oligonucleotide hybridization on high-density genomic filters. We have applied this strategy to generate a bacterial artificial chromosome (BAC) anchored map of mouse chromosome 11. Using the MIT mouse SSLP data, 320 pairs of oligonucleotide probes were designed with an “overgo” computer program that selects new primer sequences that avoid the microsatellite repeat. BACs identified by these probes are automatically anchored to the chromosome. Ninety-two percent of the probes identified positive clones from a 5.9-fold coverage mouse BAC library with an average of 7 positive clones per marker. An average of 4.2 clones was confirmed for 204 markers by PCR. Our data show that a large number of clones can be efficiently isolated from a large genomic library using this strategy with minimal effort. This strategy will have wide application for large-scale mapping and sequencing of human and other large genomes. 相似文献