首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2427篇
  免费   225篇
  2652篇
  2023年   13篇
  2022年   26篇
  2021年   66篇
  2020年   42篇
  2019年   35篇
  2018年   48篇
  2017年   37篇
  2016年   73篇
  2015年   118篇
  2014年   116篇
  2013年   166篇
  2012年   207篇
  2011年   190篇
  2010年   122篇
  2009年   109篇
  2008年   154篇
  2007年   161篇
  2006年   151篇
  2005年   138篇
  2004年   116篇
  2003年   110篇
  2002年   101篇
  2001年   32篇
  2000年   25篇
  1999年   28篇
  1998年   23篇
  1997年   12篇
  1996年   13篇
  1995年   10篇
  1994年   13篇
  1993年   11篇
  1992年   14篇
  1991年   14篇
  1990年   10篇
  1989年   6篇
  1988年   11篇
  1987年   15篇
  1986年   8篇
  1985年   16篇
  1984年   10篇
  1983年   8篇
  1981年   6篇
  1980年   6篇
  1979年   7篇
  1977年   5篇
  1976年   6篇
  1975年   4篇
  1974年   7篇
  1973年   4篇
  1972年   4篇
排序方式: 共有2652条查询结果,搜索用时 0 毫秒
1.
Intravenous injection of an endotoxin-free solution of poloxamine-908 to rats can enhance the phagocytic clearance capacity of tissue macrophages, particularly those of the liver and the spleen. Such stimulated cells were able to clear a significant portion of intravenously injected methoxypoly(ethyleneglycol)2000 liposomes (mean size of 87 nm), labelled with technetium-99m via the N-hydroxysuccinimidyl hydrazine nicotinate hydrochloride derivative of distearoyl phosphatidylethanolamine, within 4 h post administration. These liposomes, otherwise, exhibit long circulatory behaviour in control animals, with poor localization to the liver and spleen. We suggest that such technetium-99m-labelled engineered vesicles may be of aid for detection of the liver and spleen macrophages with enhanced phagocytic clearance capacity by gamma scintigraphy. Alterations in the phagocytic activity of liver and spleen macrophages is known to occur during cancer. Therefore, such diagnostic procedures may prove useful for patient selection or for monitoring the progress of treatment with long circulating nanoparticles carrying anti-cancer agents, thus minimizing damage to this important line of body's defence cells, and are discussed.  相似文献   
2.
The adenylyl cyclases (AC) act as second messengers in regulatory processes in the central nervous system. They might be involved in the pathophysiology of diseases, but their biological function is unknown, except for AC type I, which has been implicated in learning and memory. We previously mapped the gene encoding AC I to human Chromosome (Chr) 7p12. In this study we report the mapping of the adenylyl cyclase genes type I–VI to mouse chromosomes by fluorescence in situ hybridization (FISH): Adcy1 to Chr 11A2, Adcy2 to 13C1, Adcy3 to 12A-B, Adcy4 to 14D3, Adcy5 to 16B5, and Adcy6 to 15F. We also confirmed previously reported mapping results of the corresponding human loci ADCY2, ADCY3, ADCY5, and ADCY6 to human chromosomes and, in addition, determined the chromosomal location of ADCY4 to human Chr 14q11.2. The mapping data confirm known areas of conservation between mouse and human chromosomes.  相似文献   
3.
Biosynthesis of acetone and n-butanol is naturally restricted to the group of solventogenic clostridia with Clostridium acetobutylicum being the model organism for acetone-butanol-ethanol (ABE) fermentation. According to limited genetic tools, only a few rational metabolic engineering approaches were conducted in the past to improve the production of butanol, an advanced biofuel. In this study, a phosphotransbutyrylase-(Ptb) negative mutant, C. acetobutylicum ptb::int(87), was generated using the ClosTron methodology for targeted gene knock-out and resulted in a distinct butyrate-negative phenotype. The major end products of fermentation experiments without pH control were acetate (3.2?g/l), lactate (4.0?g/l), and butanol (3.4?g/l). The product pattern of the ptb mutant was altered to high ethanol (12.1?g/l) and butanol (8.0?g/l) titers in pH?≥?5.0-regulated fermentations. Glucose fed-batch cultivation elevated the ethanol concentration to 32.4?g/l, yielding a more than fourfold increased alcohol to acetone ratio as compared to the wildtype. Although butyrate was never detected in cultures of C. acetobutylicum ptb::int(87), the mutant was still capable to take up butyrate when externally added during the late exponential growth phase. These findings suggest that alternative pathways of butyrate re-assimilation exist in C. acetobutylicum, supposably mediated by acetoacetyl-CoA:acyl-CoA transferase and acetoacetate decarboxylase, as well as reverse reactions of butyrate kinase and Ptb with respect to previous studies.  相似文献   
4.
The Sec61/SecY translocon mediates translocation of proteins across the membrane and integration of membrane proteins into the lipid bilayer. The structure of the translocon revealed a plug domain blocking the pore on the lumenal side. It was proposed to be important for gating the protein conducting channel and for maintaining the permeability barrier in its unoccupied state. Here, we analyzed in yeast the effect of introducing destabilizing point mutations in the plug domain or of its partial or complete deletion. Unexpectedly, even when the entire plug domain was deleted, cells were viable without growth phenotype. They showed an effect on signal sequence orientation of diagnostic signal-anchor proteins, a minor defect in cotranslational and a significant deficiency in posttranslational translocation. Steady-state levels of the mutant protein were reduced, and when coexpressed with wild-type Sec61p, the mutant lacking the plug competed poorly for complex partners. The results suggest that the plug is unlikely to be important for sealing the translocation pore in yeast but that it plays a role in stabilizing Sec61p during translocon formation.  相似文献   
5.
Coagulase-negative staphylococci (CoNS) form a thick, multilayered biofilm on foreign bodies and are a major cause of nosocomial implant-associated infections. Although foreign body infection models are well-established, limited in vivo data are available for CoNS with small-colony-variant (SCV) phenotype described as causative agents in implant-associated infections. Therefore, we investigated the impact of the Staphylococcus epidermidis phenotype on colonization of implanted PVC catheters and abscess formation in three different mouse strains. Following introduction of a catheter subcutaneously in each flank of 8- to 12-week-old inbred C57BL/6JCrl (B6J), outbred Crl:CD1(ICR) (CD-1), and inbred BALB/cAnNCrl (BALB/c) male mice, doses of S. epidermidis O-47 wild type, its hemB mutant with stable SCV phenotype, or its complemented mutant at concentrations of 10(6) to 10(9) colony forming units (CFUs) were gently spread onto each catheter. On day 7, mice were sacrificed and the size of the abscesses as well as bacterial colonization was determined. A total of 11,500 CFUs of the complemented mutant adhered to the catheter in BALB/c followed by 9,960 CFUs and 9,900 CFUs from S. epidermidis wild type in BALB/c and CD-1, respectively. SCV colonization was highest in CD-1 with 9,500 CFUs, whereas SCVs were not detected in B6J. The minimum dose that led to colonization or abscess formation in all mouse strains was 10(7) or 10(8) CFUs of the normal phenotype, respectively. A minimum dose of 10(8) or 10(9) CFU of the hemB mutant with stable SCV phenotype led to colonization only or abscess formation, respectively. The largest abscesses were detected in BALB/c inoculated with wild type bacteria or SCV (64 mm(2) vs. 28 mm(2)). Our results indicate that colonization and abscess formation by different phenotypes of S. epidermidis in a foreign body infection model is most effective in inbred BALB/c followed by outbred CD-1 and inbred B6J mice.  相似文献   
6.
7.
Cytochrome (cyt) b561 proteins are dihaem-containing membrane proteins, belonging to the CYBASC (cytochrome-b561-ascorbate-reducible) family, and are proposed to be involved in ascorbate recycling and/or the facilitation of iron absorption. Here, we present the heterologous production of two cyt b561 paralogs from Arabidopsis thaliana (Acytb561-A, Acytb561-B) in Escherichia coli and Pichia pastoris, their purification, and initial characterisation. Spectra indicated that Acytb561-A resembles the best characterised member of the CYBASC family, the cytochrome b561 from adrenomedullary chromaffin vesicles, and that Acytb561-B is atypical compared to other CYBASC proteins. Haem oxidation–reduction midpoint potential (EM) values were found to be fully consistent with ascorbate oxidation activities and Fe3 +-chelates reductase activities. The ascorbate dependent reduction and protein stability of both paralogs were found to be sensitive to alkaline pH values as reported for the cytochrome b561 from chromaffin vesicles. For both paralogs, ascorbate-dependent reduction was inhibited and the low-potential haem EM values were affected significantly by incubation with diethyl pyrocarbonate (DEPC) in the absence of ascorbate. Modification with DEPC in the presence of ascorbate left the haem EM values unaltered compared to the unmodified proteins. However, ascorbate reduction was inhibited. We concluded that the ascorbate-binding site is located near the low-potential haem with the Fe3 +-chelates reduction-site close to the high-potential haem. Furthermore, inhibition of ascorbate oxidation by DEPC treatment occurs not only by lowering the haem EM values but also by an additional modification affecting ascorbate binding and/or electron transfer. Analytical gel filtration experiments suggest that both cyt b561 paralogs exist as homodimers.  相似文献   
8.
Considering anatomical and archaeological aspects of Homo erectus, it is likely that meat of vertebrates was an important part in its diet. Unfortunately, no or hardly any information is available for Java Man (Homo erectus). Therefore, in this paper, the Number of Identified Specimens (NISP) of five Middle Pleistocene Javanese sites are examined, and the Minimum Number of Individuals (MNI) from two of them are calculated, to acquire information about the possible ecological role of Javanese Homo erectus. Although one has to be extremely careful with the interpretation of fossil bone assemblages in order to try to gain some insight about the abundance of species in palaeocommunities, it is argued that both the NISP and the MNI indicate that the bone accumulations reflect at least two trophic levels in the ecological pyramid, that of primary and secondary consumers. The occurrences of the remains of Homo erectus are comparable with the quantity of secondary consumers, i.e., large carnivores. This could suggest that this species had, as an omnivore, a carnivorous niche, in Java.  相似文献   
9.
The Aminobacter sp. strain MSH1 has potential for pesticide bioremediation because it degrades the herbicide metabolite 2,6-dichlorobenzamide (BAM). Production of the BAM-degrading bacterium using aerobic bioreactor fermentation was investigated. A mineral salt medium limited for carbon and with an element composition similar to the strain was generated. The optimal pH and temperature for strain growth were determined using shaker flasks and verified in bioreactors. Glucose, fructose, and glycerol were suitable carbon sources for MSH1 (μ?=?0.1 h?1); slower growth was observed on succinate and acetic acid (μ?=?0.01 h?1). Standard conditions for growth of the MSH1 strain were defined at pH 7 and 25 °C, with glucose as the carbon source. In bioreactors (1 and 5 L), the specific growth rate of MSH1 increased from μ?=?0.1 h?1 on traditional mineral salt medium to μ?=?0.18 h?1 on the optimized mineral salt medium. The biomass yield under standard conditions was 0.47 g dry weight biomass/g glucose consumed. An investigation of the catabolic capacity of MSH1 cells harvested in exponential and stationary growth phases showed a degradation activity per cell of about 3?×?10?9 μg BAM h?1. Thus, fast, efficient, large-scale production of herbicide-degrading Aminobacter was possible, bringing the use of this bacterium in bioaugmentation field remediation closer to reality.  相似文献   
10.
The quinol-fumarate reductase (QFR) respiratory complex of Escherichia coli is a four-subunit integral-membrane complex that catalyzes the final step of anaerobic respiration when fumarate is the terminal electron acceptor. The membrane-soluble redox-active molecule menaquinol (MQH(2)) transfers electrons to QFR by binding directly to the membrane-spanning region. The crystal structure of QFR contains two quinone species, presumably MQH(2), bound to the transmembrane-spanning region. The binding sites for the two quinone molecules are termed Q(P) and Q(D), indicating their positions proximal (Q(P)) or distal (Q(D)) to the site of fumarate reduction in the hydrophilic flavoprotein and iron-sulfur protein subunits. It has not been established whether both of these sites are mechanistically significant. Co-crystallization studies of the E. coli QFR with the known quinol-binding site inhibitors 2-heptyl-4-hydroxyquinoline-N-oxide and 2-[1-(p-chlorophenyl)ethyl] 4,6-dinitrophenol establish that both inhibitors block the binding of MQH(2) at the Q(P) site. In the structures with the inhibitor bound at Q(P), no density is observed at Q(D), which suggests that the occupancy of this site can vary and argues against a structurally obligatory role for quinol binding to Q(D). A comparison of the Q(P) site of the E. coli enzyme with quinone-binding sites in other respiratory enzymes shows that an acidic residue is structurally conserved. This acidic residue, Glu-C29, in the E. coli enzyme may act as a proton shuttle from the quinol during enzyme turnover.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号