首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   464篇
  免费   48篇
  512篇
  2023年   1篇
  2022年   3篇
  2021年   6篇
  2020年   4篇
  2019年   6篇
  2018年   9篇
  2017年   10篇
  2016年   12篇
  2015年   27篇
  2014年   24篇
  2013年   32篇
  2012年   29篇
  2011年   30篇
  2010年   23篇
  2009年   22篇
  2008年   21篇
  2007年   24篇
  2006年   41篇
  2005年   35篇
  2004年   32篇
  2003年   23篇
  2002年   27篇
  2001年   11篇
  2000年   6篇
  1999年   6篇
  1998年   11篇
  1997年   5篇
  1994年   4篇
  1993年   4篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1987年   4篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1978年   1篇
  1976年   1篇
排序方式: 共有512条查询结果,搜索用时 15 毫秒
1.
4-Hydroxynonenal (HNE) is a lipid peroxidation product that is able to modify proteins. HNE-modified proteins are degraded to a considerable extend by the proteasomal system. It is unclear whether the recognition of HNE-modified proteins is mediated by ubiquitin, or whether the ubiquitin-independent proteasomal pathway is involved. In this study we demonstrate that HNE-modified GAPDH is preferentially ubiquitinated in vitro. In an attempt to demonstrate the formation of poly-ubiquitinated HNE-modified proteins in living cells we explored E36 fibroblasts. A clear rise in HNE-protein modification could be demonstrated after HNE treatment of the cells. Using inhibitors, we could show that the ubiquitin-dependent, ubiquitin-independent, and the lysosomal pathways affect the presence of HNE-modified proteins. We conclude that, although several proteolytic pathways exist for the degradation of HNE-modified proteins, there is the possibility of involvement of ubiquitin-dependent degradation.  相似文献   
2.
3.
Before entering mitosis, the stacks of the Golgi cisternae are separated from each other, and inhibiting this process delays entry of mammalian cells into mitosis. Protein kinase D (PKD) is known to be involved in Golgi-to–cell surface transport by controlling the biogenesis of specific transport carriers. Here we show that depletion of PKD1 and PKD2 proteins from HeLa cells by small interfering RNA leads to the accumulation of cells in the G2 phase of the cell cycle and prevents cells from entering mitosis. We further provide evidence that inhibition of PKD blocks mitotic Raf-1 and mitogen-activated protein kinase kinase (MEK) activation, and, as a consequence, mitotic Golgi fragmentation, which could be rescued by expression of active MEK1. Finally, Golgi fluorescence recovery after photobleaching analyses demonstrate that PKD is crucial for the cleavage of the noncompact zones of Golgi membranes in G2 phase. Our findings suggest that PKD controls interstack Golgi connections in a Raf-1/MEK1–dependent manner, a process required for entry of the cells into mitosis.  相似文献   
4.

Objective

To compare the accuracy of a semi-quantitative proton resonance frequency shift (PRFS) thermal mapping interface and an alternative qualitative T1 thermometry model in predicting tissue necrosis in an established routine setting of MRI-guided laser ablation in the human liver.

Materials and Methods

34 cases of PRFS-guided (GRE) laser ablation were retrospectively matched with 34 cases from an earlier patient population of 73 individuals being monitored through T1 magnitude image evaluation (FLASH 2D). The model-specific real-time estimation of necrotizing thermal impact (above 54 °C zone and T1 signal loss, respectively) was correlated in size with the resulting necrosis as shown by lack of enhancement on the first-day contrast exam (T1). Matched groups were compared using the Mann-Whitney test.

Results

Online PRFS guidance was available in 33 of 34 cases. Positive size correlation between calculated impact zone and contrast defect at first day was evident in both groups (p < 0.0004). The predictive error estimating necrosis was median 21 % (range 1 % - 52 %) in the PRFS group and 61 % (range 22 - 84 %) in the T1 magnitude group. Differences in estimating lethal impact were significant (p = 0.004), whereas the real extent of therapy-induced necrosis showed no significant difference (p > 0.28) between the two groups.

Conclusion

PRFS thermometry is feasible in a clinical setting of thermal hepatic tumor ablation. As an interference-free MR-tool for online therapy monitoring its accuracy to predict tissue necrosis is superior to a competing model of thermally induced alteration of the T1 magnitude signal.  相似文献   
5.

Larval settlement of the barnacle Balanus amphitrite Darwin (Cirripedia, Balanidae) is influenced by natural biofilms. In previous work by others, discriminatory settlement of aged cyprids has been observed in response to biofilms of different age. This study extends prior work by considering the effect of the age of cyprids on the outcome of settlement assays. Settlement was investigated with 0‐day‐old (newly metamorphosed) and 5‐day‐old cyprids. Biofilms under investigation were developed in the field for periods of 5 d and 1 month, and were subsequently included in laboratory settlement assays with a choice between a filmed and an unfilmed substratum. The bioassay was modified from the conventional horizontal dish design in order to generate a low water surface‐to‐volume ratio, which served to suppress larval entrapment in an organic layer on the water surface. Irrespective of cyprid age, a clear discrimination between a filmed and an unfilmed substrata was observed, and the preference for filmed or unfilmed substratum was dependent on the age of the cyprids. Settlement of 0‐day‐old cyprids was inhibited by a biofilmed substratum whereas induction occurred with aged cyprids. This pattern of settlement was independent of biofilm age. Bacterial abundance on unfilmed substrata in treatments and controls was significantly lower than that on biofilmed surfaces, confirming that bacterial contamination did not change the qualitative option during the assay.  相似文献   
6.
7.
Information on the genetic structure of animal populations can allow inferences about mechanisms shaping their social organization, dispersal, and mating system. The mongooses (Herpestidae) include some of the best‐studied mammalian systems in this respect, but much less is known about their closest relatives, the Malagasy carnivores (Eupleridae), even though some of them exhibit unusual association patterns. We investigated the genetic structure of the Malagasy narrow‐striped mongoose (Mungotictis decemlineata), a small forest‐dwelling gregarious carnivore exhibiting sexual segregation. Based on mtDNA and microsatellite analyses, we determined population‐wide haplotype structure and sex‐specific and within‐group relatedness. Furthermore, we analyzed parentage and sibship relationships and the level of reproductive skew. We found a matrilinear population structure, with several neighboring female units sharing identical haplotypes. Within‐group female relatedness was significantly higher than expected by chance in the majority of units. Haplotype diversity of males was significantly higher than in females, indicating male‐biased dispersal. Relatedness within the majority of male associations did not differ from random, not proving any kin‐directed benefits of male sociality in this case. We found indications for a mildly promiscuous mating system without monopolization of females by males, and low levels of reproductive skew in both sexes based on parentages of emergent young. Low relatedness within breeding pairs confirmed immigration by males and suggested similarities with patterns in social mongooses, providing a starting point for further investigations of mate choice and female control of reproduction and the connected behavioral mechanisms. Our study contributes to the understanding of the determinants of male sociality in carnivores as well as the mechanisms of female competition in species with small social units.  相似文献   
8.
Does variation in environmental harshness explain local and regional species diversity gradients? We hypothesise that for a given life form like trees, greater harshness leads to a smaller range of traits that are viable and thereby also to lower species diversity. On the basis of a strong dependence of maximum tree height on site productivity and other measures of site quality, we propose maximum tree height as an inverse measure of environmental harshness for trees. Our results show that tree species richness is strongly positively correlated with maximum tree height across multiple spatial scales in forests of both eastern and western North America. Maximum tree height co‐varied with species richness along gradients from benign to harsh environmental conditions, which supports the hypothesis that harshness may be a general mechanism limiting local diversity and explaining diversity gradients within a biogeographic region.  相似文献   
9.
The effect of tyrosine nitration on mammalian GS activity and stability was studied in vitro. Peroxynitrite at a concentration of 5 micro mol/l produced tyrosine nitration and inactivation of GS, whereas 50 micro mol/l peroxynitrite additionally increased S-nitrosylation and carbonylation and degradation of GS by the 20S proteasome. (-)Epicatechin completely prevented both, tyrosine nitration and inactivation of GS by peroxynitrite (5 micro mol/l). Further, a putative "denitrase" activity restored the activity of peroxynitrite (5 micro mol/l)-treated GS. The data point to a potential regulation of GS activity by a reversible tyrosine nitration. High levels of oxidative stress may irreversibly damage and predispose the enzyme to proteasomal degradation.  相似文献   
10.
We experimentally separated the effects of two components of plant diversity-plant species richness and plant functional group richness-on insect communities. Plant species richness and plant functional group richness had contrasting effects on insect abundances, a result we attributed to three factors. First, lower insect abundances at higher plant functional group richness were explained by a sampling effect, which was caused by the increasing likelihood that one low-quality group, C4 grasses, would be present and reduce average insect abundances by 25%. Second, plant biomass, which was positively related to plant functional group richness, had a strong, positive effect on insect abundances. Third, a positive effect of plant species richness on insect abundances may have been caused by greater availability of alternate plant resources or greater vegetational structure. In addition, a greater diversity of insect species, whose individual abundances were often unaffected by changes in plant species richness, may have generated higher total community abundances. After controlling for the strong, positive influence of insect abundance on insect diversity through rarefaction, insect species richness increased as plant species richness and plant functional group richness increased. Although these variables did not explain a high proportion of variation individually, plant species richness and plant functional group richness had similar effects on insect diversity and opposing effects on insect abundances, and both factors may explain how the loss of plant diversity influences higher trophic levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号