全文获取类型
收费全文 | 63篇 |
免费 | 4篇 |
专业分类
67篇 |
出版年
2023年 | 1篇 |
2019年 | 2篇 |
2018年 | 2篇 |
2017年 | 3篇 |
2016年 | 4篇 |
2015年 | 3篇 |
2014年 | 7篇 |
2013年 | 7篇 |
2012年 | 2篇 |
2011年 | 3篇 |
2010年 | 3篇 |
2009年 | 2篇 |
2008年 | 1篇 |
2007年 | 3篇 |
2006年 | 2篇 |
2005年 | 1篇 |
2004年 | 2篇 |
2001年 | 2篇 |
2000年 | 1篇 |
1999年 | 3篇 |
1998年 | 2篇 |
1997年 | 1篇 |
1994年 | 1篇 |
1993年 | 3篇 |
1991年 | 1篇 |
1989年 | 1篇 |
1987年 | 1篇 |
1986年 | 1篇 |
1985年 | 1篇 |
1980年 | 1篇 |
排序方式: 共有67条查询结果,搜索用时 15 毫秒
1.
Due to pervasive gene flow and admixture, simple bifurcating trees often do not provide an accurate representation of relationships among diverging lineages, but limited resolution in the available genomic data and the spatial distribution of samples has hindered detailed insights regarding the evolutionary and demographic history of many species and populations. In this issue of Molecular Ecology, Foote et al. (2019) combine a powerful sampling design with novel analytical methods adopted from human genetics to describe previously unrecognized patterns of recurrent vicariance and admixture among lineages in the globally distributed killer whale (Orcinus orca). Based on sequence data from modern samples alone, they discover clear signatures of ancient admixture with a now extinct “ghost” lineage, providing one of the first accounts of archaic introgression in a nonhominid species. Coupling a cost‐effective sequencing strategy with novel analytical approaches, their paper provides a roadmap for advancing inference of evolutionary history in other nonmodel species, promising exciting times ahead for our field. 相似文献
2.
A major difference between the divergence patterns within the lines-1 families in mice and voles 总被引:3,自引:0,他引:3
Vanlerberghe F; Bonhomme F; Hutchison CA d; Edgell MH 《Molecular biology and evolution》1993,10(4):719-731
L1 retroposons are represented in mice by subfamilies of interspersed
sequences of varied abundance. Previous analyses have indicated that
subfamilies are generated by duplicative transposition of a small number of
members of the L1 family, the progeny of which then become a major
component of the murine L1 population, and are not due to any active
processes generating homology within preexisting groups of elements in a
particular species. In mice, more than a third of the L1 elements belong to
a clade that became active approximately 5 Mya and whose elements are >
or = 95% identical. We have collected sequence information from 13 L1
elements isolated from two species of voles (Rodentia: Microtinae: Microtus
and Arvicola) and have found that divergence within the vole L1 population
is quite different from that in mice, in that there is no abundant
subfamily of homologous elements. Individual L1 elements from voles are
very divergent from one another and belong to a clade that began a period
of elevated duplicative transposition approximately 13 Mya. Sequence
analyses of portions of these divergent L1 elements (approximately 250 bp
each) gave no evidence for concerted evolution having acted on the vole L1
elements since the split of the two vole lineages approximately 3.5 Mya;
that is, the observed interspecific divergence (6.7%-24.7%) is not larger
than the intraspecific divergence (7.9%-27.2%), and phylogenetic analyses
showed no clustering into Arvicola and Microtus clades.
相似文献
3.
Irisin was first identified in muscle cells. We detected irisin immunoreactivity in various organs of the crested porcupine (Hystrix cristata). In the epidermis, irisin immunoreactivity was localized mainly in stratum basale, stratum spinosum and stratum granulosum layers; immunoreactivity was not observed in the stratum corneum. In the dermis, irisin was found in the external and internal root sheath, cortex and medulla of hair follicles, and in sebaceous glands. Irisin immunoreactivity was found in the neural retina and skeletal muscle fibers associated with the eye. The pineal and thyroid glands also exhibited irisin immunoreactivity. 相似文献
4.
5.
Hardies SC; Martin SL; Voliva CF; Hutchison CA d; Edgell MH 《Molecular biology and evolution》1986,3(2):109-125
6.
7.
Junker N Andersen MH Wenandy L Dombernowsky SL Kiss K Sørensen CH Therkildsen MH Von Buchwald C Andersen E Straten PT Svane IM 《Cytotherapy》2011,13(7):822-834
Background aimsAdoptive transfer of tumor-infiltrating lymphocytes (TIL) has proven effective in metastatic melanoma and should therefore be explored in other types of cancer. The aim of this study was to examine the feasibility of potentially expanding clinically relevant quantities of tumor-specific T-cell cultures from TIL from patients with head and neck squamous cell carcinoma (HNSCC) using a more rapid expansion procedure compared with previous HNSCC studies.MethodsIn a two-step expansion process, initially TIL bulk cultures were established from primary and recurrent HNSCC tumors in high-dose interleukin (IL)-2. Secondly, selected bulk cultures were rapidly expanded using anti-CD3 antibody, feeder cells and high-dose IL-2. T-cell subsets were phenotypically characterized using flow cytometry. T-cell receptor (TCR) clonotype mapping was applied to examine clonotype dynamics during culture. Interferon (INF)-γ detection by Elispot and Cr51 release assay determined the specificity and functional capacity of selected TIL pre- and post-rapid expansion.ResultsTIL bulk cultures were expanded in 80% of the patients included, showing tumor specificity in 60% of the patients. Rapid expansions generated up to 3500-fold expansion of selected TIL cultures within 17 days. The cultures mainly consisted of T-effector memory cells, with varying distributions of CD8+ and CD4+ subtypes both among cultures and patients. TCR clonotype mapping demonstrated oligoclonal expanded cultures, ranging from approximately 10 to 30 T-cell clonotypes. TIL from large-scale rapid expansions maintained functional capacity, and contained tumor-specific T cells.ConclusionThe procedure is feasible for expansion of TIL from HNSCC, ensuring clinically relevant expansion folds within 7 weeks. The cell culture kinetics and phenotypes of the TIL resemble previously published results on TIL from melanoma, setting the stage for clinical testing of this promising treatment strategy for patients with HNSCC. 相似文献
8.
Motivation
Paired-end sequencing protocols, offered by next generation sequencing (NGS) platforms like Illumia, generate a pair of reads for every DNA fragment in a sample. Although this protocol has been utilized for several metagenomics studies, most taxonomic binning approaches classify each of the reads (forming a pair), independently. The present work explores some simple but effective strategies of utilizing pairing-information of Illumina short reads for improving the accuracy of taxonomic binning of metagenomic datasets. The strategies proposed can be used in conjunction with all genres of existing binning methods.Results
Validation results suggest that employment of these “Binpairs” strategies can provide significant improvements in the binning outcome. The quality of the taxonomic assignments thus obtained are often comparable to those that can only be achieved with relatively longer reads obtained using other NGS platforms (such as Roche).Availability
An implementation of the proposed strategies of utilizing pairing information is freely available for academic users at https://metagenomics.atc.tcs.com/binning/binpairs. 相似文献9.
Mandel U; Hassan H; Therkildsen MH; Rygaard J; Jakobsen MH; Juhl BR; Dabelsteen E; Clausen H 《Glycobiology》1999,9(1):43-52
Mucin-type O-glycosylation is initiated by a large family of UDP- GalNAc:
polypeptide N -acetyl-galactosaminyltransferases (GalNAc- transferases).
Individual GalNAc-transferases appear to have different functions and
Northern analysis indicates that they are differently expressed in
different organs. This suggests that O-glycosylation may vary with the
repertoire of GalNAc-transferases expressed in a given cell. In order to
study the repertoire of GalNAc-transferases in situ in tissues and changes
in tumors, we have generated a panel of monoclonal antibodies (MAbs) with
well defined specificity for human GalNAc-T1, -T2, and -T3. Application of
this panel of novel antibodies revealed that GalNAc- transferases are
differentially expressed in different cell lines, in spermatozoa, and in
oral mucosa and carcinomas. For example, GalNAc-T1 and -T2 but not -T3 were
highly expressed in WI38 cells, and GalNAc-T3 but not GalNAc-T1 or -T2 was
expressed in spermatozoa. The expression patterns in normal oral mucosa
were found to vary with cell differentiation, and for GalNAc-T2 and -T3
this was reflected in oral squamous cell carcinomas. The expression pattern
of GalNAc-T1 was on the other hand changed in tumors to either total loss
or expression in cytological poorly differentiated tumor cells, where the
normal undifferentiated cells lacked expression. These results demonstrate
that the repertoire of GalNAc-transferases is different in different cell
types and vary with cellular differentiation, and malignant transformation.
The implication of this is not yet fully understood, but it suggests that
specific changes in sites of O-glycosylation of proteins may occur as a
result of changes in the repertoire of GalNAc-transferases.
相似文献
10.
Aaren S. Freeman Alejandro Frischeisen April MH. Blakeslee 《Biological invasions》2016,18(6):1653-1665
Interactions between anthropogenic disturbances and introduced and native species can shift ecological communities, potentially leading to the successful establishment of additional invaders. Since its discovery in New Jersey in 1988, the Asian shore crab (Hemigrapsus sanguineus) has continued to expand its range, invading estuarine and coastal habitats in eastern North America. In estuarine environments, H. sanguineus occupies similar habitats to native, panopeid mud crabs. These crabs, and a variety of fouling organisms (both NIS and native), often inhabit man-made substrates (like piers and riprap) and anthropogenic debris. In a series of in situ experiments at a closed dock in southwestern Long Island (New York, USA), we documented the impacts of these native and introduced crabs on hard-substrate fouling communities. We found that while the presence of native mud crabs did not significantly influence the succession of fouling communities compared to caged and uncaged controls, the presence of introduced H. sanguineus reduced the biomass of native tunicates (particularly Molgula manhattensis), relative to caged controls. Moreover, the presence of H. sanguineus favored fouling communities dominated by introduced tunicates (especially Botrylloides violaceous and Diplosoma listerianum). Altogether, our results suggest that H. sanguineus could help facilitate introduced fouling tunicates in the region, particularly in locations where additional solid substrates have created novel habitats. 相似文献