首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   2篇
  31篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2012年   2篇
  2011年   1篇
  2007年   2篇
  2006年   1篇
  2004年   2篇
  2003年   2篇
  2000年   1篇
  1998年   2篇
  1995年   1篇
  1991年   1篇
  1987年   1篇
  1985年   2篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
2.
Studies were carried out to evaluate the impact of a high-fat dietary regimen on aortic wall thickness, peripheral blood leukocyte profile, and plasma cholesterol and triglyceride levels in the mast cell-deficient Sl/Sl(d) mouse. The results demonstrated that the mean aortic wall thickness of Sl/Sl(d) mice was significantly higher than their normal littermates, and were increased in both genotypes after a 17-day high-fat regimen. In comparison with normal littermates, Sl/Sl(d) genotypes had elevated levels of plasma triglycerides with normal levels of plasma cholesterol, and the high-fat diet markedly lowered the triglyceride levels. Total peripheral blood leukocytes, the monocyte and granulocyte counts, and hemoglobin levels were significantly lower in Sl/Sl(d) mice, although the number of lymphocytes, eosinophils and basophils were the same in both genotypes. Interestingly, the high-fat diet regimen elevated leukocyte counts and the number of monocytes and granulocytes in Sl/Sl(d) mice.  相似文献   
3.
Coronary heart disease secondary to atherosclerosis is still the leading cause of death in the US. Animal models used for elucidating the pathogenesis of this disease primarily involve rabbits and pigs. Previous studies from this laboratory have demonstrated intraperitoneal injections of poloxamer 407 (P-407) in both male and female mice will lead to hyperlipidemia and atherosclerosis, suggesting the use of this polymer to develop a mouse model of atherosclerosis. In order to understand the mechanism of P-407-induced hyperlipidemia and vascular lesion formation, we evaluated the direct effects of P-407 on endothelial cell and macrophage functions in vitro, and its in vivo effects on the oxidation of circulating lipids following long-term (4 month) administration. Our results demonstrated that incubation of P-407 with human umbilical vein endothelial cells in culture did not influence either cell proliferation or interleukin-6 and interleukin-8 production over a concentration range of 0-40 microM. In addition, nitric oxide production by macrophages was not affected by P-407 over a concentration range of 0-20 microM. Finally, we demonstrated that while P-407 could not induce the oxidation of LDL-C in vitro, long-term (4 month) administration of P-407 in mice resulted in elevated levels of oxidized lipids in the plasma. Thus, it is suggested that the formation of atherosclerotic lesions in this mouse model of atherosclerosis does not result from either direct stimulation of endothelial cells or macrophage activation by P-407. Instead, these data would support the premise that oxidation of lipids (perhaps low-density lipoprotein cholesterol) by an indirect mechanism following injection of P-407 may represent one of the mechanisms responsible for atheroma formation.  相似文献   
4.
Mast cells are important cells of the immune system and are recognized as participants in the pathogenesis of atherosclerosis. In this study, we evaluated the role of mast cells on the progression of atherosclerosis and hepatic steatosis using the apolipoprotein E-deficient (ApoE(-/-)) and ApoE(-/-)/mast cell-deficient (Kit(W-sh/W-sh)) mouse models maintained on a high-fat diet. The en face analyses of aortas showed a marked reduction in plaque coverage in ApoE(-/-)/Kit(W-sh/W-sh) compared with ApoE(-/-) after a 6-mo regimen with no significant change noted after 3 mo. Quantification of intima/media thickness on hematoxylin and eosin-stained histological cross sections of the aortic arch revealed no significant difference between ApoE(-/-) and ApoE(-/-)/Kit(W-sh/W-sh) mice. The high-fat regimen did not induce atherosclerosis in either Kit(W-sh/W-sh) or wild-type mice. Mast cells with indications of degranulation were seen only in the aortic walls and heart of ApoE(-/-) mice. Compared with ApoE(-/-) mice, the serum levels of total cholesterol, low-density lipoprotein and high-density lipoprotein were decreased by 50% in ApoE(-/-)/Kit(W-sh/W-sh) mice, whereas no appreciable differences were noted in serum levels of triglycerides or very low density lipoprotein. ApoE(-/-)/Kit(W-sh/W-sh) mice developed significantly less hepatic steatosis than ApoE(-/-) mice after the 3-mo regimen. The analysis of Th1/Th2/Th17 cytokine profile in the sera revealed significant reduction of interleukin (IL)-6 and IL-10 in ApoE(-/-)/Kit(W-sh/W-sh) mice compared with ApoE(-/-) mice. The assessment of systemic generation of thromboxane A(2) (TXA(2)) and prostaglandin I(2) (PGI(2)) revealed significant decrease in the production of PGI(2) in ApoE(-/-)/Kit(W-sh/W-sh) mice with no change in TXA(2). The decrease in PGI(2) production was found to be associated with reduced levels of cyclooxygenase-2 mRNA in the aortic tissues. A significant reduction in T-lymphocytes and macrophages was noted in the atheromas of the ApoE(-/-)/Kit(W-sh/W-sh) mice. These results demonstrate the direct involvement of mast cells in the progression of atherosclerosis and hepatic steatosis.  相似文献   
5.
Peptides such as parathyroid hormone (PTH), somatostatin, and gastrin have been reported to stimulate mast cell mediator release. Preincubation of rat serosal mast cells with synthetic 1-34 bovine parathyroid hormone (1-34bPTH) significantly enhanced antigen-induced 5-hydroxytryptamine (5-HT) release. Enhancement of 5-HT release by 1-34bPTH was dose dependent between 5 and 2000 nM. In the absence of antigen, mean net 5-HT release was less than 1% when naive or passively sensitized mast cells were incubated with 1000 nM 1-34bPTH for time intervals up to 90 min. These findings indicate that 1-34bPTH, at relatively low concentration, potentiates antigen-induced 5-HT release from mast cells.  相似文献   
6.
The osteopetrotic, microphthalmic (mi/mi) mouse lacks functional osteoclasts and has also been reported to be deficient in mast cells and natural-killer (NK) cells. The later deficiencies could be secondary to the osteopetrotic marrow, or a direct result of the mi allele. Therefore, heterozygotes were examined for these cell types, since these mice do not exhibit osteopetrosis. Adult +/mi animals have approximately 50%, and mi/mi animals examined by histologic techniques or tissue histamine levels have 0-10%, of the peritoneal, dermal, and intestinal mast cells compared with that of +/+ animals. Leukocyte histamine, indicative of the number of basophils, demonstrates the same pattern. Histamine content per mast cell in +/+ and +/mi animals is identical. The number of large granular lymphocytes (LGL) in splenic leukocyte preparations from +/mi animals is 50% that of +/+ animals, and these cells are undetectable in preparations from mi/mi mice. NK activity against YAC-1 cells paralleled the number of LGL present. The resorptive response of neonatal calvaria to parathyroid hormone was delayed in the case of cultured +/mi bone compared with that of +/+ bone, but the final rate of calcium release was identical. These data indicate that 1) the presence of one mi allele can affect the development of four distinct cell types, and 2) osteopetrosis alone does not account for the lack of mast cells, basophils, and NK cells in mi/mi mice.  相似文献   
7.
The effect of somatostatin on gluconeogenesis was studied in kidney cortex slices. Addition of somatostatin (2 μg) stimulated gluconeogenesis from lactate, pyruvate and glutamine by 42%, 50% and 68% respectively. Stimulation of glucose synthesis from lactate by somatostatin was found to be linear with time and dose dependent between 0.1 and 20 μg. Somatostatin-stimulated gluconeogenesis was inhibited by phentolamine (10 μM) but not by propranolol (10 μM) suggesting that somatostatin action is mediated by α-adrenergic stimuli.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号