首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4450篇
  免费   248篇
  国内免费   2篇
  2022年   22篇
  2021年   73篇
  2020年   26篇
  2019年   52篇
  2018年   74篇
  2017年   48篇
  2016年   93篇
  2015年   135篇
  2014年   154篇
  2013年   245篇
  2012年   277篇
  2011年   293篇
  2010年   178篇
  2009年   163篇
  2008年   267篇
  2007年   270篇
  2006年   261篇
  2005年   215篇
  2004年   267篇
  2003年   246篇
  2002年   197篇
  2001年   99篇
  2000年   76篇
  1999年   83篇
  1998年   38篇
  1997年   37篇
  1996年   36篇
  1995年   41篇
  1994年   36篇
  1993年   29篇
  1992年   66篇
  1991年   61篇
  1990年   53篇
  1989年   33篇
  1988年   32篇
  1987年   34篇
  1986年   34篇
  1985年   34篇
  1984年   28篇
  1983年   23篇
  1982年   19篇
  1981年   20篇
  1980年   17篇
  1979年   18篇
  1978年   16篇
  1977年   16篇
  1976年   16篇
  1975年   26篇
  1974年   17篇
  1973年   18篇
排序方式: 共有4700条查询结果,搜索用时 31 毫秒
1.
2.
3.
Host-dependent restriction of influenza B virus replication in L cells was analysed in comparison with productive infection in MDCK or 1–5C-4 cells. The synthesis and intracellular distribution of virus-specific proteins and the production of cytoplasmic ribonucleoproteins in nonpermissive L cells were similar to those in permissive MDCK cells. However, an electron microscopic study of infected L cells showed neither extracellular virions nor budding virus particles on the cell surface, in contrast to MDCK cells which produced numerous virus particles. PAGE analysis of the plasma membrane isolated from the cells demonstrated no significant difference in the composition of viral polypeptides between permissive 1-5C-4 and nonpermissive L cells. It was noted that the abortiveness of influenza B virus infection in L cells may be due to a defect in host cell function involved in the initiation of virus budding.  相似文献   
4.
[3H]Dihydroergocryptine ([3H]DHE) was shown to bind to sites in membranes from neuroblastoma X glioma hybrid cells (NG 108-15) that had the characteristics expected of alpha-adrenergic receptors. The binding was saturable with 0.3 pmol [3H]DHE bound per mg of protein and of high affinity, with an apparent dissociation constant (KD) of 1.8 nM. The specificity of the binding site for various ligands was more similar to that of alpha 2 receptors than to that of alpha 1. No specific binding of [3H]WB-4101 was found in the membranes derived from NG 108 cells. This finding also indicated that the [3H]DHE binding site in the cell is the alpha 2 receptor. GTP lowered the affinity of agonists for the [3H]DHE binding site, although the nucleotide hardly affected the affinity of antagonists including [3H]DHE.  相似文献   
5.
To elucidate the role of the spiral limbus in glucose transport in the cochlea, we analyzed the expression and localization of GLUT1, connexin26, connexin30, and occludin in the spiral limbus of the rat cochlea. GLUT1 and occludin were detected in blood vessels. GLUT1, connexin26, connexin30, and occludin were also expressed in fibrocytes just basal to the supralimbal lining cells. Connexin26 and connexin30 were present among not only these GLUT1-positive fibrocytes but also GLUT1-negative fibrocytes. In vivo glucose imaging using 6-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-6-deoxyglucose (6-NBDG, MW 342) together with Evans Blue Albumin (EBA, MW 68,000) showed that 6-NBDG was rapidly distributed throughout the spiral limbus, whereas EBA was localized only in the vessels. Moreover, the gap junctional uncoupler heptanol inhibited the distribution of 6-NBDG. These findings suggest that gap junctions play an important role in glucose transport in the spiral limbus, i.e., that gap junctions mediate glucose transport from GLUT1-positive fibrocytes to GLUT1-negative fibrocytes in the spiral limbus.  相似文献   
6.
Okadaic acid, a potent inhibitor of Type 1 and Type 2A protein phosphatases, was used to investigate the mechanism of insulin action on membrane-bound low Km cAMP phosphodiesterase in rat adipocytes. Upon incubation of cells with 1 microM okadaic acid for 20 min, phosphodiesterase was stimulated 3.7- to 3.9-fold. This stimulation was larger than that elicited by insulin (2.5- to 3.0-fold). Although okadaic acid enhanced the effect of insulin, the maximum effects of the two agents were not additive. When cells were pretreated with 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7), the level of phosphodiesterase stimulation by okadaic acid was rendered smaller, similar to that attained by insulin. In cells that had been treated with 2 mM KCN, okadaic acid (like insulin) failed to stimulate phosphodiesterase, suggesting that ATP was essential. Also, as reported previously, the effect of insulin on phosphodiesterase was reversed upon exposure of hormone-treated cells to KCN. This deactivation of previously-stimulated phosphodiesterase was blocked by okadaic acid, but not by insulin. The above KCN experiments were carried out with cells in which A-kinase activity was minimized by pretreatment with H-7. Okadaic acid mildly stimulated basal glucose transport and, at the same time, strongly inhibited the action of insulin thereon. It is suggested that insulin may stimulate phosphodiesterase by promoting its phosphorylation and that the hormonal effect may be reversed by a protein phosphatase which is sensitive to okadaic acid. The hypothetical protein kinase thought to be involved in the insulin-dependent stimulation of phosphodiesterase appears to be more H-7-resistant than A-kinase.  相似文献   
7.
8.
Compression wood (CW) contains higher quantities of β-1-4-galactan than does normal wood (NW). However, the physiological roles and ultrastructural distribution of β-1-4-galactan during CW formation are still not well understood. The present work investigated deposition of β-1-4-galactan in differentiating tracheids of Cryptomeria japonica during CW formation using an immunological probe (LM5) combined with immunomicroscopy. Our immunolabeling studies clearly showed that differences in the distribution of β-1-4-galactan between NW (and opposite wood, OW) and CW are initiated during the formation of the S1 layer. At this stage, CW was strongly labeled in the S1 layer, whereas no label was observed in the S1 layer of NW and OW. Immunogold labeling showed that β-1-4-galactan in the S1 layer of CW tracheids significantly decreased during the formation of the S2 layer. Most β-1-4-galactan labeling was present in the outer S2 region in mature CW tracheids, and was absent in the inner S2 layer that contained helical cavities in the cell wall. In addition, delignified CW tracheids showed significantly more labeling of β-1-4-galactan in the secondary cell wall, suggesting that lignin is likely to mask β-1-4-galactan epitopes. The study clearly showed that β-1-4-galactan in CW was mainly deposited in the outer portion of the secondary cell wall, indicating that its distribution may be spatially consistent with lignin distribution in CW tracheids of Cryptomeria japonica.  相似文献   
9.
Studies were made on the position and dynamics of the OH-group of alpha-tocopherol in phospholipid membranes. There was no difference in the spin-lattice (T1) relaxation times at the 5a-position of alpha-tocopherol labeled with 13C- or C19F3-determined from the nuclear magnetic resonance (NMR) spectra of liposomes positively charged with stearylamine (SA) and negatively charged with dicetylphosphate (DCP). The zeta-potentials of egg yolk phosphatidylcholine (EYPC) liposomes with and without SA or DCP were not affected by incorporation of 20 mol% alpha-tocopherol, though incorporation of 10 mol% ascorbyl-palmitate decreased the zeta-potentials of EYPC and EYPC-SA liposomes. The P==O stretching band (1235 cm-1) of the phosphate group and C==O stretching band (1734 cm-1) of the acyl ester linkage in dimyristoylphosphatidylcholine (DMPC) liposomes, measured by Fourier transform-infrared (FT-IR) spectroscopy, were not changed by incorporation of alpha-tocopherol. These results suggest that no specific interaction occurred between the OH-group of alpha-tocopherol and the polar interfacial region of the bilayer. The dynamic quenching effects of n-(N-oxy-4,4'-dimethyloxazolidine-2-yl)stearic acids (n-NSs) on the intrinsic fluorescence of alpha-tocopherol were in the order 5-NS > 7-NS = 12-NS > 16-NS. Acrylamide, a water-soluble fluorescence quencher with a very low capacity to penetrate through phospholipid bilayers, had very low quenching efficiency. These results indicate that the bulk of the chromanol moiety of alpha-tocopherol is located in a position close to that occupied by the nitroxide group of 5-NS in the membranes and is poorly exposed at the membrane surface.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
10.
The intracellular pathway following receptor-mediated endocytosis of cholera toxin was studied using brefeldin A (BFA), which inhibited protein secretion and induced dramatic morphological changes in the Golgi region. In both mouse Y1 adrenal cells and CHO cells, BFA at 1 μg/ml caused a 80–90% inhibition of the cholera toxin (CT)-elevation of intracellular cAMP. The inhibition of the cytotoxicity of CT by BFA was also observed in a rounding assay of Y1 adrenal cells. The inhibition of CT cytotoxicity by BFA was dose dependent, with the ID50 value similar to the LD50 of BFA in Y1 adrenal cells. Binding and internalization of [125I]-cholera toxin in Y1 adrenal cells was not affected by BFA. Unlike the BFA-sensitive cell lines such as Y1 adrenal and CHO cells, BFA at 1 μg/ml did not inhibit the cytotoxicity of CT in PtK1 cells, of which the Golgi structure was BFA-resistant. These results strongly suggest that a BFA-sensitive Golgi is required for the protection of CT cytotoxicity by BFA. In contrast, elevation of the intracellular cAMP by forskolin, which acts directly on the plasma membrane adenylate cyclase, was not affected by BFA. These observations indicate that the intoxication of target cells by CT requires an intact Golgi region for its intracellular trafficking and/or processing. In this respect, CT shares a common intracellular pathway with ricin, Pseudomonas toxin, and modeccin, even though their structures and modes of action are very different. © 1993 Wiley-Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号