全文获取类型
收费全文 | 1518篇 |
免费 | 111篇 |
国内免费 | 1篇 |
专业分类
1630篇 |
出版年
2024年 | 2篇 |
2023年 | 12篇 |
2022年 | 20篇 |
2021年 | 55篇 |
2020年 | 27篇 |
2019年 | 30篇 |
2018年 | 44篇 |
2017年 | 34篇 |
2016年 | 56篇 |
2015年 | 97篇 |
2014年 | 99篇 |
2013年 | 132篇 |
2012年 | 126篇 |
2011年 | 123篇 |
2010年 | 75篇 |
2009年 | 52篇 |
2008年 | 89篇 |
2007年 | 108篇 |
2006年 | 105篇 |
2005年 | 70篇 |
2004年 | 64篇 |
2003年 | 59篇 |
2002年 | 50篇 |
2001年 | 12篇 |
2000年 | 7篇 |
1999年 | 6篇 |
1998年 | 5篇 |
1997年 | 9篇 |
1996年 | 10篇 |
1995年 | 9篇 |
1994年 | 7篇 |
1993年 | 1篇 |
1992年 | 6篇 |
1991年 | 1篇 |
1990年 | 2篇 |
1989年 | 4篇 |
1988年 | 2篇 |
1987年 | 3篇 |
1986年 | 3篇 |
1985年 | 2篇 |
1984年 | 1篇 |
1983年 | 2篇 |
1982年 | 1篇 |
1981年 | 2篇 |
1980年 | 3篇 |
1978年 | 2篇 |
1976年 | 1篇 |
排序方式: 共有1630条查询结果,搜索用时 0 毫秒
1.
2.
3.
4.
Rouhana L Wang L Buter N Kwak JE Schiltz CA Gonzalez T Kelley AE Landry CF Wickens M 《RNA (New York, N.Y.)》2005,11(7):1117-1130
Cytoplasmic polyadenylation is important in the control of mRNA stability and translation, and for early animal development and synaptic plasticity. Here, we focus on vertebrate poly(A) polymerases that are members of the recently described GLD2 family. We identify and characterize two closely related GLD2 proteins in Xenopus oocytes, and show that they possess PAP activity in vivo and in vitro and that they bind known polyadenylation factors and mRNAs known to receive poly(A) during development. We propose that at least two distinct polyadenylation complexes exist in Xenopus oocytes, one of which contains GLD2; the other, maskin and Pumilio. GLD2 protein interacts with the polyadenylation factor, CPEB, in a conserved manner. mRNAs that encode GLD2 in mammals are expressed in many tissues. In the brain, mouse, and human GLD2 mRNAs are abundant in anatomical regions necessary for long-term cognitive and emotional learning. In the hippocampus, mouse GLD2 mRNA colocalizes with CPEB1 and Pumilio1 mRNAs, both of which are likely involved in synaptic plasticity. We suggest that mammalian GLD2 poly(A) polymerases are important in synaptic translation, and in polyadenylation throughout the soma. 相似文献
5.
Silber Avner Ben-Jaacov Jaacov Ackerman Alexander Bar-Tal Asher Levkovitch Irit Matsevitz-Yosef Tania Swartzberg Dvora Riov Josef Granot David 《Plant and Soil》2002,245(2):249-260
Phosphorus, an essential plant nutrient, may become toxic when accumulated by plants to high concentrations. Certain plant species such as Verticordia plumosa L. suffer from P toxicity at solution concentrations far lower than most other plant species. In this study, exposure of V. plumosa plants to a solution containing as low as 3 mg l–1 P resulted in significant growth inhibition and typical symptoms of P toxicity. In a wide range of P levels studied, micronutrient concentrations in V. plumosa leaves were within the range considered adequate for optimal growth. Notably, tomato plants with high hexokinase activity due to overexpression of Arabidopsis hexokinase (AtHXK1) exhibited senescence symptoms similar to those of P toxic V. plumosa. The resemblance in senescence symptoms between P-toxic tomato plants and those with high hexokinase activity suggested that increased sugar metabolism could play a role in P toxicity in plants. To test this hypothesis, we determined the amount of hexose phosphate, the product of hexokinase, in V. plumosa leaves grown at various P levels in the nutrient solution. Positive correlations were found between concentration in the medium, P concentration in the plant, hexose phosphate concentration in leaves and P toxicity symptoms. Foliar Zn application suppressed P toxicity symptoms and reduced the level of hexose phosphate in leaves. Furthermore, Zn also inhibited hexokinase activity in vitro. Based on these results we suggest that P toxicity involves sugar metabolism via increased activity of hexokinase that accelerates senescence 相似文献
6.
Paoli P Modesti A Magherini F Gamberi T Caselli A Manao G Raugei G Camici G Ramponi G 《Biochimica et biophysica acta》2007,1770(5):753-762
We mutated Trp(134) and Tyr(135) of the yeast LMW-PTP to explore their catalytic roles, demonstrating that the mutations of Trp(134) to Tyr or Ala, and Tyr(135) to Ala, all interfere with the formation of the phosphorylenzyme intermediate, a phenomenon that can be seen by the decrease in the kinetic constant of the chemical step (k(3)). Furthermore, we noted that the Trp(134) to Ala mutation causes a dramatic drop in k(cat)/K(m) and a slight enhancement of the dissociation constant K(s). The conservative mutant W134Y shows a k(cat)/K(m) very close to that of wild type, probably compensating the two-fold decrease of k(3) with an increase in substrate affinity. The Y135A mutation enhances the substrate affinity, but reduces the enzyme phosphorylation rate. The replacement of Trp(134) with alanine interferes with the partition between phosphorylenzyme hydrolysis and phosphotransfer from the phosphorylenzyme to glycerol and abolish the enzyme activation by adenine. Finally, we found that mutation of Trp(134) to Ala causes a dramatic change in the pH-rate profile that becomes similar to that of the D132A mutant, suggesting that an aromatic residue in position 134 is necessary to assist the proper positioning of the proton donor in the transition state of the chemical step. 相似文献
7.
8.
Contradictory statements about the non-steroidal anti-inflammatory drugs from the European Medicines Agency and the United States Food and Drug Administration have raised questions about whether regulatory decisions are evidence-based. For the selective COX-2 inhibitors, there are clear contraindications and warnings in Europe, but only a vaguely worded Black Box warning in the United States. All the non-selective agents are given an almost "clean bill of health" in Europe, while all of them are judged to have a similar risk-benefit ratio as celecoxib in the United States. The regulatory agencies have failed to recognize the clinical trial evidence that the risk of cardiovascular events varies substantially among the non-selective agents, with diclofenac carrying the highest risk of harm. 相似文献
9.
10.