首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   794篇
  免费   76篇
  870篇
  2023年   2篇
  2022年   15篇
  2021年   21篇
  2020年   6篇
  2019年   22篇
  2018年   20篇
  2017年   7篇
  2016年   33篇
  2015年   37篇
  2014年   43篇
  2013年   51篇
  2012年   75篇
  2011年   59篇
  2010年   45篇
  2009年   38篇
  2008年   52篇
  2007年   46篇
  2006年   45篇
  2005年   37篇
  2004年   42篇
  2003年   32篇
  2002年   32篇
  2001年   13篇
  2000年   2篇
  1999年   8篇
  1998年   14篇
  1997年   4篇
  1996年   7篇
  1995年   6篇
  1994年   3篇
  1993年   4篇
  1992年   6篇
  1991年   4篇
  1989年   6篇
  1988年   4篇
  1987年   2篇
  1985年   3篇
  1982年   5篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1955年   4篇
  1954年   1篇
排序方式: 共有870条查询结果,搜索用时 15 毫秒
1.
Musculo-skeletal allografts sterilized and deep frozen are among the most common human tissue to be preserved and utilized in modern medicine. The effects of a long deep freezing period on cortical bone has already been evaluated and found to be insignificant. However, there are no reports about the influences of a protracted deep freezing period on osteochondral allografts. One hundred osteochondral cylinders were taken from a fresh specimen and humeral heads of 1 year, 2 years, 3 years and 4 year old bones. Twenty chips from each period, with a minimum of 3 chips per humeral head. Each was mechanically tested by 3 point compression. The fresh osteochondral allografts were significantly mechanically better than the deep frozen osteochondral allografts. There was no statistical significant time dependent difference between the deep frozen groups in relation to the freezing period. Therefore, we conclude that, from the mechanical point of view deep freezing of osteochondral allografts over a period of 4 years, is safe without further deterioration of the biomechanical properties of the osteochondral allografts.  相似文献   
2.

Aims

As one of the five Lactate dehydrogenase (LDH) isoenzymes, LDH5 has the highest efficiency to catalyze pyruvate transformation to lactate. LDH5 overexpression in cancer cells induces an upregulated glycolytic metabolism and reduced dependence on the presence of oxygen. Here we analyzed LDH5 protein expression in a well characterized large cohort of primary lung cancers in correlation to clinico-pathological data and its possible impact on patient survival.

Methods

Primary lung cancers (n = 269) and non neoplastic lung tissue (n = 35) were tested for LDH5 expression by immunohistochemistry using a polyclonal LDH5 antibody (ab53010). The results of LDH5 expression were correlated to clinico-pathological data as well as to patient's survival. In addition, the results of the previously tested Transketolase like 1 protein (TKTL1) expression were correlated to LDH5 expression.

Results

89.5% (n = 238) of NSCLC revealed LDH5 expression whereas LDH5 expression was not detected in non neoplastic lung tissues (n = 34) (p < 0.0001). LDH5 overexpression was associated with histological type (adenocarcinoma = 57%, squamous cell carcinoma = 45%, large cell carcinoma = 46%, p = 0.006). No significant correlation could be detected with regard to TNM-stage, grading or survival. A two sided correlation between the expression of TKTL1 and LDH5 could be shown (p = 0.002) within the overall cohort as well as for each grading and pN group. A significant correlation between LDH5 and TKTL1 within each histologic tumortype could not be revealed.

Conclusions

LDH5 is overexpressed in NSCLC and could hence serve as an additional marker for malignancy. Furthermore, LDH5 correlates positively with the prognostic marker TKTL1. Our results confirm a close link between the two metabolic enzymes and indicate an alteration in the glucose metabolism in the process of malignant transformation.  相似文献   
3.
The basic and intrinsically disordered C-terminal domain (CTD) of the linker histone (LH) is essential for chromatin compaction. However, its conformation upon nucleosome binding and its impact on chromatin organization remain unknown. Our mesoscale chromatin model with a flexible LH CTD captures a dynamic, salt-dependent condensation mechanism driven by charge neutralization between the LH and linker DNA. Namely, at low salt concentration, CTD condenses, but LH only interacts with the nucleosome and one linker DNA, resulting in a semi-open nucleosome configuration; at higher salt, LH interacts with the nucleosome and two linker DNAs, promoting stem formation and chromatin compaction. CTD charge reduction unfolds the domain and decondenses chromatin, a mechanism in consonance with reduced counterion screening in vitro and phosphorylated LH in vivo. Divalent ions counteract this decondensation effect by maintaining nucleosome stems and expelling the CTDs to the fiber exterior. Additionally, we explain that the CTD folding depends on the chromatin fiber size, and we show that the asymmetric structure of the LH globular head is responsible for the uneven interaction observed between the LH and the linker DNAs. All these mechanisms may impact epigenetic regulation and higher levels of chromatin folding.  相似文献   
4.
The changes in glutathione-dependent cycle enzymes and catalase activities under Cr(VI)-induced oxidative stress were investigated in two distinct cell lines: L-41−human epithelial-like cells and HLF−fetal human diploid lung fibroblasts, which differ in tissue origin, proliferation, and antioxidant enzymes activities. The chromium concentrations from 1 to 5 μM cause nontoxic effects and activate antioxidant enzymes to overcome oxidative stress. In spite of some differences in the endogenous antioxidant activities, both cell lines reveal the same range of toxic concentrations (20–30 μM). The irreversible inhibition of glutathione-dependent antioxidant enzymes develops under toxic concentrations and serves as a marker of toxicity. The endogenous antioxidant activity influences time-dependent expression of Cr(VI) toxicity and the dynamics of antioxidant enzymes activity under nontoxic conditions. The cell antioxidant defense system is an important marker of the cell adaptive capacity under nontoxic and toxic conditions.  相似文献   
5.
Purpose

Population growth and urbanization lead to increasing water demand, putting significant pressure on natural water sources. The rising amounts of domestic wastewater (WW) in urban areas may be treated to serve as an alternative water source that may alleviate this pressure. This study examines sustainability of utilizing reclaimed domestic wastewater in urban households for toilet flushing and garden irrigation. It models a city characterized by water scarcity, using a coal-based electricity mix.

Methods

Four approaches were compared: (0) Business-as-usual (BAU) alternative, where the central WW treatment plant effluent is discharged to nature; (1) central WW treatment and urban reuse of the effluent produced; (2) semi-distributed greywater treatment and reuse, at cluster scale; (3) Distributed greywater treatment and reuse, at building scale. Environmental life cycle assessment (LCA), social LCA (S-LCA), and life cycle costing (LCC) were applied to the system model of the above scenarios, with seawater desalination as the source for potable water. System boundaries include water supply, WW collection, and treatment facilities. Analytical hierarchy process (AHP), a multi-criteria decision analysis (MCDA) methodology, was integrated into the life cycle sustainability assessment (LCSA) framework as a means for weighting sustainability criteria through judgment elicitation from a panel of 20 experts.

Results and discussion

Environmentally and socially, the two distributed alternatives perform better in most impact categories. Socially, semi-distributed (cluster scale) reuse is somewhat advantageous over the fully distributed alternative (building scale), due to the benefits of community engagement. Economically, the cluster-level scenario is the most preferable, while the building-scale scenario is the least preferable. A hierarchical representation of the problem’s criteria was constructed, according to the principals of AHP. Each criterion was weighted and those of extreme low importance were eliminated, while maintaining the integrity of the experts’ judgments. Weighted and aggregated sustainability scores revealed that cluster level reclamation, under modeled conditions, is the most sustainable option and the BAU scenario is the least sustainable. The other two alternatives, centralized and fully distributed reclamation, obtained similar intermediate scores.

Conclusions

Distributed urban water reuse was found to be more sustainable than current practice. Different alternative solutions are advantageous in different ways, but overall, the reclamation and reuse of greywater at the cluster level seems to be the best option among the three reuse options examined in this assessment. AHP proved an effective method for aggregating the multiple sustainability criteria. The hierarchical view maintains transparency of all local weights while leading to the final weight vector.

  相似文献   
6.
7.
Graph representations have been widely used to analyze and design various economic, social, military, political, and biological networks. In systems biology, networks of cells and organs are useful for understanding disease and medical treatments and, in structural biology, structures of molecules can be described, including RNA structures. In our RNA-As-Graphs (RAG) framework, we represent RNA structures as tree graphs by translating unpaired regions into vertices and helices into edges. Here we explore the modularity of RNA structures by applying graph partitioning known in graph theory to divide an RNA graph into subgraphs. To our knowledge, this is the first application of graph partitioning to biology, and the results suggest a systematic approach for modular design in general. The graph partitioning algorithms utilize mathematical properties of the Laplacian eigenvector (µ2) corresponding to the second eigenvalues (λ2) associated with the topology matrix defining the graph: λ2 describes the overall topology, and the sum of µ2′s components is zero. The three types of algorithms, termed median, sign, and gap cuts, divide a graph by determining nodes of cut by median, zero, and largest gap of µ2′s components, respectively. We apply these algorithms to 45 graphs corresponding to all solved RNA structures up through 11 vertices (∼220 nucleotides). While we observe that the median cut divides a graph into two similar-sized subgraphs, the sign and gap cuts partition a graph into two topologically-distinct subgraphs. We find that the gap cut produces the best biologically-relevant partitioning for RNA because it divides RNAs at less stable connections while maintaining junctions intact. The iterative gap cuts suggest basic modules and assembly protocols to design large RNA structures. Our graph substructuring thus suggests a systematic approach to explore the modularity of biological networks. In our applications to RNA structures, subgraphs also suggest design strategies for novel RNA motifs.  相似文献   
8.
9.
Aerobic heterotrophs were isolated from subsurface soil samples obtained from the U.S. Department of Energy's (DOE) Field Research Center (FRC) located at Oak Ridge, Tenn. The FRC represents a unique, extreme environment consisting of highly acidic soils with co-occurring heavy metals, radionuclides, and high nitrate concentrations. Four hundred isolates obtained from contaminated soil were assayed for heavy metal resistance, and a smaller subset was assayed for tolerance to uranium. The vast majority of the isolates were gram-positive bacteria and belonged to the high-G+C- and low-G+C-content genera Arthrobacter and Bacillus, respectively. Genomic DNA from a randomly chosen subset of 50 Pb-resistant (Pb(r)) isolates was amplified with PCR primers specific for P(IB)-type ATPases (i.e., pbrA/cadA/zntA). A total of 10 pbrA/cadA/zntA loci exhibited evidence of acquisition by horizontal gene transfer. A remarkable dissemination of the horizontally acquired P(IB)-type ATPases was supported by unusual DNA base compositions and phylogenetic incongruence. Numerous Pb(r) P(IB)-type ATPase-positive FRC isolates belonging to the genus Arthrobacter tolerated toxic concentrations of soluble U(VI) (UO(2)(2+)) at pH 4. These unrelated, yet synergistic, physiological traits observed in Arthrobacter isolates residing in the contaminated FRC subsurface may contribute to the survival of the organisms in such an extreme environment. This study is, to the best of our knowledge, the first study to report broad horizontal transfer of P(IB)-type ATPases in contaminated subsurface soils and is among the first studies to report uranium tolerance of aerobic heterotrophs obtained from the acidic subsurface at the DOE FRC.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号