首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3334篇
  免费   263篇
  国内免费   3篇
  3600篇
  2024年   10篇
  2023年   12篇
  2022年   54篇
  2021年   91篇
  2020年   53篇
  2019年   74篇
  2018年   112篇
  2017年   100篇
  2016年   132篇
  2015年   195篇
  2014年   212篇
  2013年   226篇
  2012年   305篇
  2011年   293篇
  2010年   145篇
  2009年   141篇
  2008年   205篇
  2007年   207篇
  2006年   147篇
  2005年   152篇
  2004年   175篇
  2003年   116篇
  2002年   106篇
  2001年   66篇
  2000年   70篇
  1999年   43篇
  1998年   30篇
  1997年   12篇
  1996年   13篇
  1995年   13篇
  1994年   12篇
  1993年   4篇
  1992年   16篇
  1991年   14篇
  1990年   7篇
  1989年   8篇
  1988年   2篇
  1987年   4篇
  1986年   4篇
  1985年   1篇
  1984年   3篇
  1983年   5篇
  1982年   1篇
  1980年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1965年   1篇
  1960年   2篇
  1959年   1篇
排序方式: 共有3600条查询结果,搜索用时 15 毫秒
1.
Secretion of levansucrase from Zymomonas mobilis in Escherichiacoli by glycine supplement was investigated. A significant amount of levansucrase (about 25% of total activity) was found in intact whole-cells. Cell fractionation experiments showed that levansucrase was found both in the periplasmic space and in the cytoplasmic fraction of E. coli. None or only trace amounts of levansucrase was detected in the extracellular culture broth at 24 h of cultivation and it accrued with the increasing concentration of glycine in the culture medium and duration of the culture period. Optimal glycine concentration for the maximum secretion of levansucrase was in the range of 0.8-1%, in which approximately 20-50% of levansucrase was released into the extracellular fraction at 24 h of cultivation, although glycine retarded the bacterial growth.  相似文献   
2.
Bcr-Abl, a nonreceptor tyrosine kinase, is associated with leukemias, especially chronic myeloid leukemia (CML). Deletion of Abl's N-terminal region, to which myristoyl is linked, renders the Bcr-Abl fusion oncoprotein constitutively active. The substitution of Abl's N-terminal region by Bcr enables Bcr-Abl oligomerization. Oligomerization is critical: it promotes clustering on the membrane, which is essential for potent MAPK signaling and cell proliferation. Here we decipher the Bcr-Abl specific, step-by-step oligomerization process, identify a specific packing surface, determine exactly how the process is structured and identify its key elements. Bcr's coiled coil (CC) domain at the N-terminal controls Bcr-Abl oligomerization. Crystallography validated oligomerization via Bcr-Abl dimerization between two Bcr CC domains, with tetramerization via tight packing between two binary assemblies. However, the structural principles guiding Bcr CC domain oligomerization are unknown, hindering mechanistic understanding and drugs exploiting it. Using molecular dynamics (MD) simulations, we determine that the binary complex of the Bcr CC domain serves as a basic unit in the quaternary complex providing a specific surface for dimer–dimer packing and higher-order oligomerization. We discover that the small α1-helix is the key. In the binary assembly, the helix forms interchain aromatic dimeric packing, and in the quaternary assembly, it contributes to the specific dimer–dimer packing. Our mechanism is supported by the experimental literature. It offers the key elements controlling this process which can expand the drug discovery strategy, including by Bcr CC-derived peptides, and candidate residues for small covalent drugs, toward quenching oligomerization, supplementing competitive and allosteric tyrosine kinase inhibitors.  相似文献   
3.
The transient absorption at 296 nm was part of the spectroscopic evidence that initiated the proposal that tyrosinate (Tyr-) is formed during, and important to, the photocycle of bacteriorhodopsin (bR). Recent evidence against such a proposal comes from the results of NMR, UV Raman as well as electron cryo-microscopic structural studies. This makes it credible to assign this absorption to a charge perturbation of the lowest energy absorption of one of the tryptophan (Trp) residues in bR. The transient absorption at 296 nm is examined for each of 8 tryptophan mutants in which Trp is substituted by phenylalanine or cysteine, which absorb at shorter wavelength. It is shown that while all go through the photocycle, all but Trp-182 mutant show this transient absorption. This strongly suggests the assignment of this absorption to a charge perturbaton of the lowest energy absorption of Trp-182 during the photocycle. The chemical identity of the perturbing charge(s) is briefly discussed.  相似文献   
4.
Jang do S  Lee HJ  Lee B  Hong BH  Cha HJ  Yoon J  Lim K  Yoon YJ  Kim J  Ree M  Lee HC  Choi KY 《FEBS letters》2006,580(17):4166-4171
Failure to detect the intermediate in spite of its existence often leads to the conclusion that two-state transition in the unfolding process of the protein can be justified. In contrast to the previous equilibrium unfolding experiment fitted to a two-state model by circular dichroism and fluorescence spectroscopies, an equilibrium unfolding intermediate of a dimeric ketosteroid isomerase (KSI) could be detected by small angle X-ray scattering (SAXS) and analytical ultracentrifugation. The sizes of KSI were determined to be 18.7A in 0M urea, 17.3A in 5.2M urea, and 25.1A in 7M urea by SAXS. The size of KSI in 5.2M urea was significantly decreased compared with those in 0M and 7M urea, suggesting the existence of a compact intermediate. Sedimentation velocity as obtained by ultracentrifugation confirmed that KSI in 5.2M urea is distinctly different from native and fully-unfolded forms. The sizes measured by pulse field gradient nuclear magnetic resonance (NMR) spectroscopy were consistent with those obtained by SAXS. Discrepancy of equilibrium unfolding studies between size measurement methods and optical spectroscopies might be due to the failure in detecting the intermediate by optical spectroscopic methods. Further characterization of the intermediate using (1)H NMR spectroscopy and Kratky plot supported the existence of a partially-folded form of KSI which is distinct from those of native and fully-unfolded KSIs. Taken together, our results suggest that the formation of a compact intermediate should precede the association of monomers prior to the dimerization process during the folding of KSI.  相似文献   
5.
A Gram-staining-negative, rod-shaped and red-pigmented bacterial strain, HMD3125T, was isolated from a solar saltern in Jeungdo, Republic of Korea. A phylogenetic tree based on 16S rRNA gene sequences showed that strain HMD3125T formed a lineage within the genus Pontibacter and was similar to Pontibacter salisaro (96.1%) and P. korlensis (95.3%). The major fatty acids of strain HMD3125T were summed feature 4 (comprising iso-C17:1 I and/or anteiso-C17:1 B; 30.4%), iso-C15:0 (20.4%) and iso-C17:0 3OH (17.2%). The polar lipid profile of HMD3125T consisted of the phosphatidylethanolamine, four unidentified polar lipids, unidentified phospholipid, unidentified aminolipid and unidentified aminophospholipid. Strain HMD3125T contained MK-7 as the predominant menaquinone and sym-homospermidine as the major polyamine. The DNA G+C content of strain HMD3125T was 45.6 mol%. Strain HMD3125T assigned as a novel species in the genus Pontibacter, for which the name Pontibacter jeungdoensis sp. nov. is proposed. The type strain is HMD3125T (=KCTC 23156T =CECT 7710T).  相似文献   
6.
Remarkable improvements in the electrochemical performance of Si materials for Li‐ion batteries have been recently achieved, but the inherent volume change of Si still induces electrode expansion and external cell deformation. Here, the void structure in Si‐encapsulating hollow carbons is optimized in order to minimize the volume expansion of Si‐based anodes and improve electrochemical performance. When compared to chemical etching, the hollow structure is achieved via electroless etching is more advanced due to the improved electrical contact between carbon and Si. Despite the very thick electrodes (30 ~ 40 μm), this results in better cycle and rate performances including little capacity fading over 50 cycles and 1100 mA h g?1 at 2C rate. Also, an in situ dilatometer technique is used to perform a comprehensive study of electrode thickness change, and Si‐encapsulating hollow carbon mitigates the volume change of electrodes by adoption of void space, resulting in a small volume increase of 18% after full lithiation corresponding with a reversible capacity of about 2000 mA h g?1.  相似文献   
7.
Cell adhesion molecules play a crucial role in fundamental biological processes via regulating cell–cell interactions. Nerve injury induced protein1 (Ninjurin1) is a novel adhesion protein that has no significant homology with other known cell adhesion molecules. Here we present the assignment of an 81 aa construct for human Ninjurin1 Extracellular N-Terminal (ENT) domain, which comprises the critical adhesion domain.  相似文献   
8.
The proteins in plasma perform many important functions in the body, and the protein profiles of the plasma vary under different physiological and pathological conditions. In an attempt to identify novel marker proteins for diabetes prognosis, we examined the effect of hypoglycemic dipeptide cyclo (His-Pro) (CHP) on the differential regulation of plasma proteins in streptozocin-induced diabetic rats and genetically-diabetic (ob/ob) mice. The orally-administrated CHP produced an excellent hypoglycemic effect in both animal models, lowering the average plasma glucose level by over 50 %. In the 2-DE analysis of the plasma, a total of 23 spots among 500 visualized spots were found to be differentially regulated, and they were identified by MALDI/TOF mass spectrometry. These proteins include the down-regulation of Apo E and the up-regulation of FGA, Apo A-I, Apo A-IV, and A1M in STZ-induced diabetic rats. Moreover, CHP significantly reduced the plasma protein levels of FGB, FGC, F12, C1QTNF5, and SPA3K, as well as increased the abundance of A1M, A2M, Apo E, and TTR in genetically-diabetic mice. In conclusion, alteration in the regulation of these proteins indicates that this treatment may be successful in overcoming the diabetic state. The present proteomic data can serve as the basis for the development of specific evidence-based interventions allowing for the prevention and treatment of diabetes.  相似文献   
9.
Glutathione‐S‐transferases have been identified in all the living species examined so far, yet little is known about their function in marine organisms. In a previous report, the recently identified GST from Antarctic bivalve Laternula elliptica (LeGST) was classified into the rho class GST, but there are several unique features of LeGST that may justify reclassification, which could represent specific shellfish GSTs. Here, we determined the crystal structure of LeGST, which is a shellfish specific class of GST. The structural analysis showed that the relatively open and wide hydrophobic H‐site of the LeGST allows this GST to accommodate various substrates. These results suggest that the H‐site of LeGST may be the result of adaptation to their environments as sedentary organisms. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
10.

Key message

Overexpression of OsGS gene modulates oxidative stress response in rice after exposure to cadmium stress. Our results describe the features of transformants with enhanced tolerance to Cd and abiotic stresses.

Abstract

Glutamine synthetase (GS) (EC 6.3.1.2) is an enzyme that plays an essential role in the metabolism of nitrogen by catalyzing the condensation of glutamate and ammonia to form glutamine. Exposure of plants to cadmium (Cd) has been reported to decrease GS activity in maize, pea, bean, and rice. To better understand the function of the GS gene under Cd stress in rice, we constructed a recombinant pART vector carrying the GS gene under the control of the CaMV 35S promoter and OCS terminator and transformed using Agrobacterium tumefaciens. We then investigated GS overexpressing rice lines at the physiological and molecular levels under Cd toxicity and abiotic stress conditions. We observed a decrease in GS enzyme activity and mRNA expression among transgenic and wild-type plants subjected to Cd stress. The decrease, however, was significantly lower in the wild type than in the transgenic plants. This was further validated by the high GS mRNA expression and enzyme activity in most of the transgenic lines. Moreover, after 10 days of exposure to Cd stress, increase in the glutamine reductase activity and low or no malondialdehyde contents were observed. These results showed that overexpression of the GS gene in rice modulated the expression of enzymes responsible for membrane peroxidation that may result in plant death.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号