首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   877篇
  免费   59篇
  936篇
  2024年   2篇
  2023年   3篇
  2022年   7篇
  2021年   17篇
  2020年   8篇
  2019年   15篇
  2018年   21篇
  2017年   12篇
  2016年   30篇
  2015年   38篇
  2014年   46篇
  2013年   63篇
  2012年   57篇
  2011年   57篇
  2010年   36篇
  2009年   38篇
  2008年   49篇
  2007年   56篇
  2006年   59篇
  2005年   49篇
  2004年   48篇
  2003年   42篇
  2002年   33篇
  2001年   20篇
  2000年   13篇
  1999年   17篇
  1998年   13篇
  1997年   8篇
  1996年   13篇
  1995年   6篇
  1994年   6篇
  1992年   2篇
  1991年   7篇
  1990年   8篇
  1988年   4篇
  1987年   2篇
  1985年   5篇
  1984年   2篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
  1973年   3篇
  1972年   1篇
  1969年   1篇
  1966年   1篇
  1962年   1篇
排序方式: 共有936条查询结果,搜索用时 21 毫秒
1.
Summary The sporophores of Pleurotus are gymnocarpous and continuously release spores in the atmosphere causing respiratory allergies like hay fever and farmer’s lung disease among workers. The allergy is caused by the antigens present on the walls of the spores. Apart from this, during commercial production, these spores settle on the fruit bodies, germinate and form a velvety film which gives an unpleasant appearance to the mushrooms. The spores emitted may include new genotypes likely to attack wood or trees. Spore allergy is one of the most important limiting factors for the large scale cultivation of this species. Different approaches are being adopted at IIHR for the production of commercial sporeless/low-sporing strains of Pleurotus to alleviate the spore allergy problem. Attempts were made during the present investigation to produce sporeless or low-sporing mutants through u.v. mutation. Mutation of the mycelium did not yield the desired results. Mutation of the spores of Pleurotus sajor-caju yielded an extremely low-sporing mutant after 75 min exposure. The character has been found to be stable for more than 10 generations of subculturing.  相似文献   
2.
Sequential addition of vanadyl sulfate to a phosphate-buffered solution of H2O2 released oxygen only after the second batch of vanadyl. Ethanol added to such reaction mixtures progressively decreased oxygen release and increased oxygen consumption during oxidation of vanadyl by H2O2. Inclusion of ethanol after any of the three batches of vanadyl resulted in varying amounts of oxygen consumption, a property also shared by other alcohols (methanol, propanol and octanol). On increasing the concentration of ethanol, vanadyl sulfate or H2O2, both oxygen consumption and acetaldehyde formation increased progressively. Formation of acetaldehyde decreased with increase in the ratio of vanadyl:H2O2 above 2:1 and was undetectable with ethanol at 0.1 mM. The reaction mixture which was acidic in the absence of phosphate buffer (pH 7.0), released oxygen immediately after the first addition of vanadyl and also in presence of ethanol soon after initial rapid consumption of oxygen, with no accompanying acetaldehyde formation. The results underscore the importance of some vanadium complexes formed during vanadyl oxidation in the accompanying oxygen-transfer reactions.  相似文献   
3.
When spinach chloroplast membranes were exposed to osmotic stress in vitro, by incubation in 1.0 M sorbitol + 10 mM MgCl2 their oxygen evolving system was suppressed. The possible reasons for such inactivation of PS II mediated oxygen evolution were examined. There were conformational changes in the chloroplast membranes, as indicated by their absorption spectra. The pattern of sensitivity to DCMU was not altered. The sensitivity of PS II to water stress remained, even after a pre-wash treatment with NaCI (which removed 18 and 24 kD proteins) but not when the thylakoids were pretreated with NH20H or CaCl2 (removed manganese and 33 kD). The manganese content of thylakoid membranes was markedly reduced under osmotic stress in presence of magnesium. We suggest that exposure of chloroplasts to 1.0 M sorbitol in presence of Mg2+ released manganese from thylakoid membranes, thereby leading to a suppression in oxygen evolution.  相似文献   
4.
Two Clostridium thermocellum strains were improved for ethanol tolerance, to 5% (v/v), by gradual adaptation and mutation. The best mutant gave an ethanol yield of 0.37 g/g substrate, with a growth yield 1.5 times more than its parent. Accumulation of acids and reducing sugars by the mutant strain with 5% (v/v) ethanol was lower than that of the parent strain with 1.5% (v/v) ethanol.  相似文献   
5.
The site of inhibition of chlorophyll biosynthesis by α′,α′-dipyridyl was found to be at the level of conversion of chlorophyllide (672 nm) to chlorophyll (678 nm) during greening of groundnut leaves. This inhibition was partially reversed by certain divalent cations.  相似文献   
6.
SMCT1 is a Na+-coupled monocarboxylate transporter expressed in a variety of tissues including kidney, thyroid, small intestine, colon, brain, and retina. We found recently that several non-steroidal anti-inflammatory drugs (NSAIDs) inhibit the activity of SMCT1. Here we evaluated the effect of diclofenac, also a NSAID, on SMCT1. SMCT1 cDNA was expressed heterologously in the human retinal pigment epithelial cell lines HRPE and ARPE-19, the human mammary epithelial cell line MCF7, and in Xenopus laevis oocytes. Transport was monitored by substrate uptake and substrate-induced currents. Na+-dependent uptake/current was considered as SMCT1 activity. The effect of diclofenac was evaluated for specificity, dose-response, and influence on transport kinetics. To study the specificity of the diclofenac effect, we evaluated the influence of this NSAID on the activity of several other cloned transporters in mammalian cells under identical conditions. In contrast to several NSAIDs that inhibited SMCT1, diclofenac stimulated SMCT1 when expressed in HRPE and ARPE-19 cells. The stimulation was marked, ranging from 2- to 5-fold depending on the concentration of diclofenac. The stimulation was associated with an increase in the maximal velocity of the transport system as well as with an increase in substrate affinity. The observed effect on SMCT1 was selective because the activity of several other cloned transporters, when expressed in HRPE cells and studied under identical conditions, was not affected by diclofenac. Interestingly, the stimulatory effect on SMCT1 observed in HRPE and ARPE-19 cells was not evident in MCF7 cells nor in the X. laevis expression system, indicating that SMCT1 was not the direct target for diclofenac. The RPE-specific effect suggests that the target of diclofenac that mediates the stimulatory effect is expressed in RPE cells but not in MCF7 cells or in X. laevis oocytes. Since SMCT1 is a concentrative transporter for metabolically important compounds such as pyruvate, lactate, β-hydroxybutyrate, and nicotinate, the stimulation of its activity by diclofenac in RPE cells has biological and clinical significance.  相似文献   
7.

Background  

Riboswitches are a type of noncoding RNA that regulate gene expression by switching from one structural conformation to another on ligand binding. The various classes of riboswitches discovered so far are differentiated by the ligand, which on binding induces a conformational switch. Every class of riboswitch is characterized by an aptamer domain, which provides the site for ligand binding, and an expression platform that undergoes conformational change on ligand binding. The sequence and structure of the aptamer domain is highly conserved in riboswitches belonging to the same class. We propose a method for fast and accurate identification of riboswitches using profile Hidden Markov Models (pHMM). Our method exploits the high degree of sequence conservation that characterizes the aptamer domain.  相似文献   
8.
Werner and Bloom syndromes are genetic RecQ helicase disorders characterized by genomic instability. Biochemical and genetic data indicate that an important protein interaction of WRN and Bloom syndrome (BLM) helicases is with the structure-specific nuclease Flap Endonuclease 1 (FEN-1), an enzyme that is implicated in the processing of DNA intermediates that arise during cellular DNA replication, repair and recombination. To acquire a better understanding of the interaction of WRN and BLM with FEN-1, we have mapped the FEN-1 binding site on the two RecQ helicases. Both WRN and BLM bind to the extreme C-terminal 18 amino acid tail of FEN-1 that is adjacent to the PCNA binding site of FEN-1. The importance of the WRN/BLM physical interaction with the FEN-1 C-terminal tail was confirmed by functional interaction studies with catalytically active purified recombinant FEN-1 deletion mutant proteins that lack either the WRN/BLM binding site or the PCNA interaction site. The distinct binding sites of WRN and PCNA and their combined effect on FEN-1 nuclease activity suggest that they may coordinately act with FEN-1. WRN was shown to facilitate FEN-1 binding to its preferred double-flap substrate through its protein interaction with the FEN-1 C-terminal binding site. WRN retained its ability to physically bind and stimulate acetylated FEN-1 cleavage activity to the same extent as unacetylated FEN-1. These studies provide new insights to the interaction of WRN and BLM helicases with FEN-1, and how these interactions might be regulated with the PCNA–FEN-1 interaction during DNA replication and repair.  相似文献   
9.
hBSSL and its truncated variant hBSSL-C cDNA clones were expressed inPichia pastorisusing two different signal peptides, native signal peptide and invertase signal peptide, respectively, to facilitate secretion of the recombinant proteins into the culture medium. Both recombinant proteins were secreted into the culture medium to a level of 45–50 mg/liter in shake flask cultures. Native signal peptide of hBSSL was recognized inP. pastorisand was cleaved at the same site as in humans. The level of expression of the hBSSL gene was found to be dependent on the number of its copies integrated into the host chromosome. The multicopy transformant clone was found to be very stable. When grown and induced in a fermentor, the level of accumulation of the recombinant hBSSL in the culture medium improved from 50 mg/liter in shake flask cultures to 300 mg/liter. The recombinant hBSSL purified from the culture supernatant was found to be similar to the native hBSSL in its biochemical properties except for the lectin-binding profile.  相似文献   
10.
Active DNA-dependent ATPase A Domain (ADAAD) is a SWI2/SNF2 protein that hydrolyzes ATP in the presence of stem-loop DNA that contains both double-stranded and single-stranded regions. ADAAD possesses the seven helicase motifs that are a characteristic feature of all the SWI2/SNF2 proteins present in yeast as well as mammalian cells. In addition, these proteins also possess the Q motif ~17 nucleotides upstream of motif I. Using site-directed mutagenesis, we have sought to define the role of motifs Q and I in ATP hydrolysis mediated by ADAAD. We show that in ADAAD both motifs Q and I are required for ATP catalysis but not for ATP binding. In addition, the conserved glutamine present in motif Q also dictates the catalytic rate. The ability of the conserved glutamine present in motif Q to dictate the catalytic rate has not been observed in helicases. Further, the SWI2/SNF2 proteins contain a conserved glutamine, one amino acid residue downstream of motif I. This conserved glutamine, Q244 in ADAAD, also directs the rate of catalysis but is not required either for hydrolysis or for ligand binding. Finally, we show that the adenine moiety of ATP is sufficient for interaction with SWI2/SNF2 proteins. The γ-phosphate of ATP is required for inducing the conformational change that leads to ATPase activity. Thus, the SWI2/SNF2 proteins despite sequence conservation with helicases appear to behave in a manner distinct from that of the helicases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号