全文获取类型
收费全文 | 111篇 |
免费 | 18篇 |
国内免费 | 1篇 |
专业分类
130篇 |
出版年
2023年 | 2篇 |
2020年 | 1篇 |
2019年 | 2篇 |
2018年 | 5篇 |
2017年 | 2篇 |
2016年 | 6篇 |
2015年 | 5篇 |
2014年 | 6篇 |
2013年 | 9篇 |
2012年 | 9篇 |
2011年 | 6篇 |
2010年 | 3篇 |
2009年 | 7篇 |
2008年 | 3篇 |
2007年 | 5篇 |
2006年 | 5篇 |
2005年 | 8篇 |
2004年 | 3篇 |
2003年 | 2篇 |
2002年 | 1篇 |
2001年 | 3篇 |
2000年 | 1篇 |
1999年 | 3篇 |
1998年 | 3篇 |
1997年 | 2篇 |
1996年 | 3篇 |
1994年 | 2篇 |
1993年 | 4篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1989年 | 1篇 |
1987年 | 1篇 |
1986年 | 2篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1983年 | 2篇 |
1981年 | 3篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1978年 | 2篇 |
1977年 | 1篇 |
1975年 | 1篇 |
排序方式: 共有130条查询结果,搜索用时 15 毫秒
1.
Gaps formed by stream laid gravels in a warm temperate Podocarp-Angiosperm rain forest in New Zealand were quickly invaded by 41 free-standing woody species. Height-age curves for the eight most frequent species were used to construct a 12 yr chronosequence which showed 18 species arrived by 0.9 yr and 33 by 1.9 yr. This rapid invasion was supplied from both gaps and mature forest and fitted the Initial Floristic Model coupled with a Facilitation Mechanism. Over the 12 yr period, stem density and births peaked at 0.9 yr and deaths at 1.9 yr with a natality of 39.5/m2, a mortality of 38.5/m2 and nearly 99% dying as seedlings. Plant height increased to 5.1 m at 12.1 yr with height increment peaking at 43 cm/yr at 7.3 yr. Maximum potential heights ranged from 4 to 60 m and were positively correlated with longevity which varied from 20 to 1150 yr for 19 known species. A decline in height increment to 0.9 yr showed a below-ground component in intraspecific competition with significant negative correlations between stem density and height indicating a later above-ground component. There was no significant height competition amongst the 11 most frequent species and only one significant negative interspecific association. This suggests high species coexistence for which Equal chance was probably the major mechanism. Given this coexistence, rapid species arrival, early sexual maturity and similar density and height-age patterns, the main dynamic variables may be maximum height, longevity and height increment, all of which are, partly, genetically programmed. Most dynamic affinities are with tropical forest, although height growth and species richness are warm temperate. 相似文献
2.
Zahra Kiani Doostmorad Zafari Saeed Rezaee Amir Arjmandian Mazdasht Gitti P.C. Struik 《Archives Of Phytopathology And Plant Protection》2013,46(19):2401-2408
Globodera rostochiensis and Rhizoctonia solani are the most important growth limiting factors influencing potato production in Iran. The effects of inoculation with Potato Cyst Nematodes (PCN) (0, 50, 75 and 100 cysts/3.5?kg soil) and R. solani (with or without inoculation) on potato growth and development were investigated in cultivars Santé and Marfona. Inoculation with R. solani induced severe damage, especially when inoculation was accompanied with high density of PCN. The damage caused by R. solani tended to increase with an increase in PCN density, especially in Marfona. In Santé, number of stems or branches per plant significantly increased by inoculation with R. solani, while in Marfona it was significantly affected either by R. solani inoculation or PCN density. In Santé, number of stolons per plant was significantly increased by PCN, but not by R. solani. In Marfona, however, the number of stolons per plant was significantly affected either by R. solani inoculation or by presence of PCN, but not affected by PCN density. The general effect of R. solani or PCN inoculation treatments on shoot, below-ground and total dry weight of potato was significant, but strongly affected by cultivar. In general, our study supports the synergistic interaction between R. solani and PCN and its moderation by the use of a resistant cultivar such as Santé. 相似文献
3.
4.
VLJ Whitehall TD Dumenil DM McKeone CE Bond ML Bettington RL Buttenshaw L Bowdler GW Montgomery LF Wockner BA Leggett 《Epigenetics》2014,9(11):1454-1460
The CpG Island Methylator Phenotype (CIMP) is fundamental to an important subset of colorectal cancer; however, its cause is unknown. CIMP is associated with microsatellite instability but is also found in BRAF mutant microsatellite stable cancers that are associated with poor prognosis. The isocitrate dehydrogenase 1 (IDH1) gene causes CIMP in glioma due to an activating mutation that produces the 2-hydroxyglutarate oncometabolite. We therefore examined IDH1 alteration as a potential cause of CIMP in colorectal cancer. The IDH1 mutational hotspot was screened in 86 CIMP-positive and 80 CIMP-negative cancers. The entire coding sequence was examined in 81 CIMP-positive colorectal cancers. Forty-seven cancers varying by CIMP-status and IDH1 mutation status were examined using Illumina 450K DNA methylation microarrays. The R132C IDH1 mutation was detected in 4/166 cancers. All IDH1 mutations were in CIMP cancers that were BRAF mutant and microsatellite stable (4/45, 8.9%). Unsupervised hierarchical cluster analysis identified an IDH1 mutation-like methylation signature in approximately half of the CIMP-positive cancers. IDH1 mutation appears to cause CIMP in a small proportion of BRAF mutant, microsatellite stable colorectal cancers. This study provides a precedent that a single gene mutation may cause CIMP in colorectal cancer, and that this will be associated with a specific epigenetic signature and clinicopathological features. 相似文献
5.
Differential response of cycling and noncycling cells to inducers of DNA synthesis and mitosis 总被引:1,自引:0,他引:1 下载免费PDF全文
The objective of this study was to determine whether cells in G(0) phase are functionally distinct from those in G(1) with regard to their ability to respond to the inducers of DNA synthesis and to retard the cell cycle traverse of the G(2) component after fusion. Synchronized populations of HeLa cells in G(1) and human diploid fibroblasts in G(1) and G(0) phases were separately fused using UV-inactivated Sendai virus with HeLa cells prelabeled with [(3)H]ThdR and synchronized in S or G(2) phases. The kinetics of initiation of DNA synthesis in the nuclei of G(0) and G(1) cells residing in G(0)/S and G(1)/S dikaryons, respectively, were studied as a function of time after fusion. In the G(0)/G(2) and G(1)/G(2) fusions, the rate of entry into mitosis of the heterophasic binucleate cells was monitored in the presence of Colcemid. The effects of protein synthesis inhibition in the G(1) cells, and the UV irradiation of G(0) cells before fusion, on the rate of entry of the G(2) component into mitosis were also studied. The results of this study indicate that DNA synthesis can be induced in G(0)nuclei after fusion between G(0)- and S-phase cells, but G(0) nuclei are much slower than G(1) nuclei in responding to the inducers of DNA synthesis because the chromatin of G(0) cells is more condensed than it is in G(1) cells. A more interesting observation resulting from this study is that G(0) cells is more condensed than it is in G(1) cells. A more interesting observation resulting from this study is that G(0) cells differ from G(1) cells with regard to their effects on the cell cycle progression of the G(2) nucleus into mitosis. This difference between G(0) and G(1) cells appears to depend on certain factors, probably nonhistone proteins, present in G(1) cells but absent in G(0) cells. These factors can be induced in G(0) cells by UV irradiation and inhibited in G(1) cells by cycloheximide treatment. 相似文献
6.
7.
QTL analysis and QTL-based prediction of flowering phenology in recombinant inbred lines of barley 总被引:7,自引:0,他引:7
Combining ecophysiological modelling and genetic mapping has increasingly received attention from researchers who wish to predict complex plant or crop traits under diverse environmental conditions. The potential for using this combined approach to predict flowering time of individual genotypes in a recombinant inbred line (RIL) population of spring barley (Hordeum vulgare L.) was examined. An ecophysiological phenology model predicts preflowering duration as affected by temperature and photoperiod, based on the following four input traits: f(o) (the minimum number of days to flowering at the optimum temperature and photoperiod), theta1 and theta2 (the development stages for the start and the end of the photoperiod-sensitive phase, respectively), and delta (the photoperiod sensitivity). The model-input trait values were obtained from a photoperiod-controlled greenhouse experiment. Assuming additivity of QTL effects, a multiple QTL model was fitted for the model-input traits using composite interval mapping. Four to seven QTL were identified for each trait. Each trait had at least one QTL specific to that trait alone. Other QTL were shared by two or all traits. Values of the model-input traits predicted for the RILs from the QTL model were fed back into the ecophysiological model. This QTL-based ecophysiological model was subsequently used to predict preflowering duration (d) for eight field trial environments. The model accounted for 72% of the observed variation among 94 RILs and 94% of the variation among the two parents across the eight environments, when observations in different environments were pooled. However, due to the low percentage (34-41%) of phenotypic variation accounted for by the identified QTL for three model-input traits (theta1, theta2 and delta), the QTL-based model accounted for somewhat less variation among the RILs than the model using original phenotypic input trait values. Nevertheless, days to flowering as predicted from the QTL-based ecophysiological model were highly correlated with days to flowering as predicted from QTL-models per environment for days to flowering per se. The ecophysiological phenology model was thus capable of extrapolating (QTL) information from one environment to another. 相似文献
8.
Pollen germination and in vivo fertilization in response to high‐temperature during flowering in hybrid and inbred rice 下载免费PDF全文
Wanju Shi Xiang Li Ralf C. Schmidt Paul C. Struik Xinyou Yin S.V. Krishna Jagadish 《Plant, cell & environment》2018,41(6):1287-1297
High‐temperature during flowering in rice causes spikelet sterility and is a major threat to rice productivity in tropical and subtropical regions, where hybrid rice development is increasingly contributing to sustain food security. However, the sensitivity of hybrids to increasing temperature and physiological responses in terms of dynamic fertilization processes is unknown. To address these questions, several promising hybrids and inbreds were exposed to control temperature and high day‐time temperature (HDT) in Experiment 1, and hybrids having contrasting heat tolerance were selected for Experiment 2 for further physiological investigation under HDT and high‐night‐time‐temperature treatments. The day‐time temperature played a dominant role in determining spikelet fertility compared with the night‐time temperature. HDT significantly induced spikelet sterility in tested hybrids, and hybrids had higher heat susceptibility than the high‐yielding inbred varieties. Poor pollen germination was strongly associated with sterility under high‐temperature. Our novel observations capturing the series of dynamic fertilization processes demonstrated that pollen tubes not reaching the viable embryo sac was the major cause for spikelet sterility under heat exposure. Our findings highlight the urgent need to improve heat tolerance in hybrids and incorporating early‐morning flowering as a promising trait for mitigating HDT stress impact at flowering. 相似文献
9.
In transplants from in vitro‐derived plantlets from very early potato (Solanum tuberosum) cultivars, a lower degree of tuber induction at the time of field planting is thought to increase tuber production. Leaf‐bud cuttings were used to assess the progress to tuber induction in in vitro‐derived potato plantlets during the transplant production phase and after subsequent transplanting into the field. Induction and initiation of tubers on the same plants were assessed to study the effects of the duration of transplant production and conditions during transplant production for cv. Gloria (very early) and cv. Bintje (mid‐early). In vitro‐produced plantlets were not induced by the time of planting but rapidly progressed to the induced state thereafter. The progress in induction with time and the change in percentage of plants showing tubers fitted typical sigmoid curves. Plantlets achieved 50% induction ca 15 days after planting into in vivo conditions, and 50% tuber initiation usually occurred 10 days later. Shorter transplant production periods reduced the degree of induction of the transplants at field planting. Transplant production for more than 2 weeks was required to allow conditions during that period to affect induction or initiation. Long‐term non‐inducing conditions delayed the progress to tuber induction in cv. Gloria and delayed tuber initiation in both cultivars. Cv. Gloria showed no faster progress to induction than cv. Bintje but initiated tubers earlier. The results suggest that the relation between progress to induction and tuber initiation is cultivar dependent and that leaf‐bud cuttings can be used successfully in very young in vitro‐derived plants for assessing the progress to tuber induction. 相似文献
10.
Dry purified ligamentum nuchae elastin has been investigated for physical aging. The samples were quenched from a temperature (197°C) close to the softening point to a number of measuring temperatures ranging from ?20 to +180°C. At each temperature, the small-strain torsional creep properties were determined at a number of elapsed intervals after the quench. Aging effects were found over the whole temperature range, and the creep and aging behavior of elastin turned out to be very similar to that of synthetic polymers. 相似文献