排序方式: 共有65条查询结果,搜索用时 0 毫秒
1.
The effects of streptozotocin induced diabetes (50 mg/Kg) on the circadian rhythms in the excretion of sodium and potassium as well as their plasma concentration rhythms were investigated. Control (C) and diabetic (D) rats were studied during a light-dark (12h:12h) cycle and fed ad libitum. Statistically significant circadian rhythms were found for sodium and potassium excretion in C rats. The orthophases of both rhythms occurred in the dark phase, the potassium one occurring before that of sodium. In D rats there is increased excretion of both sodium and potassium with the rhythmicity maintained for sodium excretion only, which has an earlier orthophase than in the C rats. Plasma sodium and potassium concentrations showed a statistically significant circadian pattern in C rats, with orthophase in the light phase. This rhythmicity only appears in plasma potassium concentration for D rats, with orthophase at the end of the dark phase. The results in diabetic rats may suggest that the glomerular filtration rate (GFR) and/or tubular reabsorption rhythms are still contributing to the sodium excretory rhythm, and that the loss of the circadian rhythm in sodium plasma concentration has no influence on the sodium excretion rhythm. Nevertheless, the loss of the potassium excretion rhythm may suggest a disruption of the variations in the secretory process, as this excretion seems to be independent of the plasma potassium concentration rhythm, which is not lost in D rats. 相似文献
2.
Glycation of biomolecules, such as proteins, peptide hormones, nucleic acids, and lipids, may be a major contributor to the pathological manifestations of aging and diabetes mellitus. These nonenzymatic reactions, also termed the Maillard reaction, alter the biological and chemical properties of biomolecules. In order to investigate the effect of various reducing sugars on the products formed from small bioactive peptides (Tyr-Gly-Gly-Phe-Leu, Tyr-Gly-Gly-Phe-Leu-NH2, Tyr-Gly-Gly-Phe-Leu-OMe, Tyr-Gly-Gly-Phe, and Tyr-Gly-Gly), model systems were prepared with glucose, mannose or galactose. Peptide-sugar mixtures were incubated at 37 or 50 degrees C in phosphate-buffered saline, pH 7.4, or in methanol. The extent of glycation was determined periodically by RP HPLC. All sugar-peptide mixtures generated two different types of glycation products: N-(1-deoxy-ketos-1-yl)-peptide (Amadori compound) and the imidazolidinone compound substituted by sugar pentitol and peptide residue. The amount and distribution of peptide glycation products depended on the structure of the reactants, and increased in both concentration- and time-dependent manner in relation to exposure to sugar. Additionally, the rate of hydrolysis of glucose-derived imidazolidinone compounds, obtained either from leucine-enkephalin (1) or its shorter N-terminal fragments 2 and 3, was determined by incubation at 37 degrees C in human serum. These results revealed that imidazolidinones obtained from glucose and small peptides are almost completely protected from the action of enzymes in serum, the predominant route of degradation being spontaneous hydrolysis to initial sugar and peptide compound. 相似文献
3.
Arantxa Tabernero † Eva M. Lavado † Begoña Granda † Ana Velasco† José M. Medina† 《Journal of neurochemistry》2001,79(3):606-616
Unlike in the adult brain, the newborn brain specifically takes up serum albumin during the postnatal period, coinciding with the stage of maximal brain development. Here we report that albumin stimulates oleic acid synthesis by astrocytes from the main metabolic substrates available during brain development. Oleic acid released by astrocytes is used by neurons for the synthesis of phospholipids and is specifically incorporated into growth cones. Oleic acid promotes axonal growth, neuronal clustering, and expression of the axonal growth-associated protein-43, GAP-43; all these observations indicating neuronal differentiation. The effect of oleic acid on GAP-43 synthesis is brought about by the activation of protein kinase C, since it was prevented by inhibitors of this kinase, such as H-7, polymyxin or sphingosine. The expression of GAP-43 was significantly increased in neurons co-cultured with astrocytes by the presence of albumin indicating that neuronal differentiation takes place in the presence of oleic acid synthesized and released by astrocytes in situ. In conclusion, during brain development the presence of albumin could play an important role by triggering the synthesis and release of oleic acid by astrocytes, which induces neuronal differentiation. 相似文献
4.
Experimental tumor models constitute a prerequisite toward chronotherapy testing in cancer patients. Studies in experimental models are required to understand the relation between tumor rhythms and antitumor treatments efficacy. In healthy tissues, cell proliferation, and differentiation processes are regulated precisely and exhibit marked circadian rhythmicity. Experimental and human tumors can retain circadian rhythms or display altered oscillations. Healthy tissues can also display rhythm modifications, possibly related to cancer stage. Cellular rhythms modulate the metabolism of cytotoxic agents and the cellular response to them; hence, they determine the chronopharmacology of anticancer drugs. Circadian rhythms in host tolerability and/or cancer chemotherapy efficacy have been demonstrated with nontoxic doses of drugs in several experimental tumor models, while in other ones a circadian-time effect was only seen within a specific dose range. The usual coupling between tolerability and efficacy rhythms of anticancer agents has resulted in significant improvement of their therapeutic index. Results of laboratory animal studies have been extrapolated to the design of clinical cancer therapy trials involving a chronobiological approach. 相似文献
5.
The inhibition pattern was identified for a reaction system composed of Trichoderma reesei cellulase enzyme complex and lime-pretreated corn stover. Also, the glucose inhibition effect was quantified for the aforementioned reaction system over a range of enzyme loadings and substrate concentrations. Lastly, the range of substrate concentrations and enzyme loadings were identified in which the linear form of the simplified HCH-1 Model is valid. The HCH-1 Model is a modified Michaelis-Menton Model with non-competitive inhibition and the fraction of insoluble substrate available to bind with enzyme. With a high enzyme loading, the HCH-1 Model can be integrated and simplified in such a way that sugar conversion is linearly proportional to the logarithm of enzyme loading. A wide range of enzyme loadings (0.25-50 FPU/g dry biomass) and substrate concentrations (10-100g/L) were investigated. All experiments were conducted with an excess cellobiase loading to ensure the experimental results were not influenced by cellobiose inhibition. A non-competitive inhibition pattern was identified for the corn stover-cellulase reaction system, thereby validating the assumptions of the HCH-1 Model. At a substrate concentration of 10 g/L, glucose inhibition parameters of 0.986 and 0.979 were measured for enzyme loadings of 2 FPU/g dry biomass and 50 FPU/g dry biomass, respectively. At 5 FPU/g dry biomass, glucose inhibition parameters of 0.985 and 0.853 were measured for substrate concentrations of 10 and 100g/L, respectively. The linear form of the HCH-1 Model predicted biomass digestibility for lime-pretreated corn stover over an enzyme loading range of 0.25-50 FPU/g dry biomass and substrate concentration range of 10-100g/L. 相似文献
6.
Short‐term lime pretreatment uses lime and high‐pressure oxygen to significantly increase the digestibility of poplar wood. When the treated poplar wood was enzymatically hydrolyzed, glucan and xylan were converted to glucose and xylose, respectively. To calculate product yields from raw biomass, these sugars were expressed as equivalent glucan and xylan. To recommend pretreatment conditions, the single criterion was the maximum overall glucan and xylan yields using a cellulase loading of 15 FPU/g glucan in raw biomass. On this basis, the recommended conditions for short‐term lime pretreatment of poplar wood follow: (1) 2 h, 140°C, 21.7 bar absolute and (2) 2 h, 160°C, and 14.8 bar absolute. In these two cases, the reactivity was nearly identical, thus the selected condition depends on the economic trade off between pressure and temperature. Considering glucose and xylose and their oligomers produced during 72 h of enzymatic hydrolysis, the overall yields attained under these recommended conditions follow: (1) 95.5 g glucan/100 g of glucan in raw biomass and 73.1 g xylan/100 g xylan in raw biomass and (2) 94.2 g glucan/100 g glucan in raw biomass and 73.2 g xylan/100 g xylan in raw biomass. The yields improved by increasing the enzyme loading. An optimal enzyme cocktail was identified as 67% cellulase, 12% β‐glucosidase, and 24% xylanase (mass of protein basis) with cellulase activity of 15 FPU/g glucan in raw biomass and total enzyme loading of 51 mg protein/g glucan in raw biomass. Ball milling the lime‐treated poplar wood allowed for 100% conversion of glucan in 120 h with a cellulase loading of only 10 FPU/g glucan in raw biomass. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 相似文献
7.
Elena Granda Davi Rodrigo Rossatto J. Julio Camarero Jordi Voltas Fernando Valladares 《Oecologia》2014,174(1):307-317
Forest dynamics will depend upon the physiological performance of individual tree species under more stressful conditions caused by climate change. In order to compare the idiosyncratic responses of Mediterranean tree species (Quercus faginea, Pinus nigra, Juniperus thurifera) coexisting in forests of central Spain, we evaluated the temporal changes in secondary growth (basal area increment; BAI) and intrinsic water-use efficiency (iWUE) during the last four decades, determined how coexisting species are responding to increases in atmospheric CO2 concentrations (C a) and drought stress, and assessed the relationship among iWUE and growth during climatically contrasting years. All species increased their iWUE (ca. +15 to +21 %) between the 1970s and the 2000s. This increase was positively related to C a for J. thurifera and to higher C a and drought for Q. faginea and P. nigra. During climatically favourable years the study species either increased or maintained their growth at rising iWUE, suggesting a higher CO2 uptake. However, during unfavourable climatic years Q. faginea and especially P. nigra showed sharp declines in growth at enhanced iWUE, likely caused by a reduced stomatal conductance to save water under stressful dry conditions. In contrast, J. thurifera showed enhanced growth also during unfavourable years at increased iWUE, denoting a beneficial effect of C a even under climatically harsh conditions. Our results reveal significant inter-specific differences in growth driven by alternative physiological responses to increasing drought stress. Thus, forest composition in the Mediterranean region might be altered due to contrasting capacities of coexisting tree species to withstand increasingly stressful conditions. 相似文献
8.
Nonenzymatic glycation of proteins, peptides and other macromolecules (the Maillard reaction) has been implicated in a number of pathologies, most clearly in diabetes mellitus. but also in the normal processes of aging and neurodegenerative amyloid diseases such as Alzheimer's. In the early stage, glycation results in the formation of Amadori-modified proteins. In the later stages, advanced glycation end products (AGE) are irreversibly formed from Amadori products leading to the formation of reactive intermediates, crosslinking of proteins, and the formation of brown and fluorescent polymeric materials. Although, the glycation of structural proteins has been attributed a key role in the complications of diabetes, recent attention has been devoted to the physiological significance of glycated peptide hormones. This review focuses on the physico-chemical properties of the Amadori compounds of bioactive peptides of endogenous and exogenous origin, such as Leu-enkephalin and morphiceptin, investigated under different conditions as well as on novel pathways in the Maillard reaction observed from investigating intramolecular events in ester-linked glycopeptides. 相似文献
9.
Summary A method is described wherin blood samples taken from adults or newborns and dried on filter paper can be used for hemoglobin analysis within 2 years after sampling. The samples are eluted in 8 M urea in the presence of 5% 2-mercaptoethanol and 2% of the neutral detergent Nonidet P-40. Then the individual , , , and chains are separated by means of electrofocusing in 8 M urea-PAA gels. Up to 96 samples can be applied to a gel using multiple syringes. Several hundred samples can be analyzed daily by one person. This method may be especially useful for preventive programs against sickle cell anemia as well as for human mutation monitoring systems.Abbreviations used in this paper PAA
polyacrylamide
- PAG
polyacrylamide gel
- TCA
trichloroacetic acid
- PKU
phenylketonuria 相似文献
10.
David M. J. S. Bowman Stephen T. Garnett Snow Barlow Sarah A. Bekessy Sean M. Bellairs Melanie J. Bishop Ross A. Bradstock Darryl N. Jones Sean L. Maxwell Jamie Pittock Maria V. Toral‐Granda James E. M. Watson Tom Wilson Kerstin K. Zander Lesley Hughes 《Restoration Ecology》2017,25(5):674-680
The global scale and rapidity of environmental change is challenging ecologists to reimagine their theoretical principles and management practices. Increasingly, historical ecological conditions are inadequate targets for restoration ecology, geographically circumscribed nature reserves are incapable of protecting all biodiversity, and the precautionary principle applied to management interventions no longer ensures avoidance of ecological harm. In addition, human responses to global environmental changes, such as migration, building of protective infrastructures, and land use change, are having their own negative environmental impacts. We use examples from wildlands, urban, and degraded environments, as well as marine and freshwater ecosystems, to show that human adaptation responses to rapid ecological change can be explicitly designed to benefit biodiversity. This approach, which we call “renewal ecology,” is based on acceptance that environmental change will have transformative effects on coupled human and natural systems and recognizes the need to harmonize biodiversity with human infrastructure, for the benefit of both. 相似文献