全文获取类型
收费全文 | 107篇 |
免费 | 17篇 |
专业分类
124篇 |
出版年
2021年 | 2篇 |
2019年 | 2篇 |
2018年 | 2篇 |
2017年 | 2篇 |
2015年 | 3篇 |
2013年 | 4篇 |
2012年 | 4篇 |
2011年 | 8篇 |
2010年 | 4篇 |
2009年 | 5篇 |
2008年 | 2篇 |
2007年 | 8篇 |
2006年 | 4篇 |
2005年 | 5篇 |
2004年 | 4篇 |
2003年 | 3篇 |
2002年 | 4篇 |
2001年 | 4篇 |
2000年 | 3篇 |
1996年 | 2篇 |
1995年 | 1篇 |
1994年 | 2篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1988年 | 3篇 |
1986年 | 1篇 |
1983年 | 1篇 |
1981年 | 2篇 |
1980年 | 1篇 |
1979年 | 3篇 |
1978年 | 3篇 |
1977年 | 1篇 |
1975年 | 2篇 |
1974年 | 3篇 |
1973年 | 1篇 |
1972年 | 1篇 |
1971年 | 1篇 |
1970年 | 2篇 |
1968年 | 2篇 |
1967年 | 1篇 |
1966年 | 1篇 |
1964年 | 2篇 |
1943年 | 1篇 |
1942年 | 1篇 |
1941年 | 1篇 |
1921年 | 1篇 |
1913年 | 2篇 |
1908年 | 1篇 |
排序方式: 共有124条查询结果,搜索用时 15 毫秒
1.
Kirstie H. Stansfield Terry Jo Bichell Aaron B. Bowman Tomás R. Guilarte 《Journal of neurochemistry》2014,131(5):655-666
High levels of manganese (Mn) exposure decrease striatal medium spiny neuron (MSN) dendritic length and spine density, but the mechanism(s) are not known. The Huntingtin (HTT) gene has been functionally linked to cortical brain‐derived neurotrophic factor (BDNF) support of striatal MSNs via phosphorylation at serine 421. In Huntington's disease, pathogenic CAG repeat expansions of HTT decrease synthesis and disrupt transport of cortical–striatal BDNF, which may contribute to disease, and Mn is a putative environmental modifier of Huntington's disease pathology. Thus, we tested the hypothesis that changes in MSN dendritic morphology Mn due to exposure are associated with decreased BDNF levels and alterations in Htt protein. We report that BDNF levels are decreased in the striatum of Mn‐exposed non‐human primates and in the cerebral cortex and striatum of mice exposed to Mn. Furthermore, proBDNF and mature BDNF concentrations in primary cortical and hippocampal neuron cultures were decreased by exposure to Mn confirming the in vivo findings. Mn exposure decreased serine 421 phosphorylation of Htt in cortical and hippocampal neurons and increased total Htt levels. These data strongly support the hypothesis that Mn‐exposure‐related MSN pathology is associated with decreased BDNF trophic support via alterations in Htt.
2.
Boyd HF Flynn ST Hickey DM Ife RJ Jones M Leach CA Macphee CH Milliner KJ Rawlings DA Slingsby BP Smith SA Stansfield IG Tew DG Theobald CJ 《Bioorganic & medicinal chemistry letters》2000,10(4):395-398
Starting from two weakly active hits from high throughput screening, a novel series of 2-(alkylthio)-pyrimidin-4-ones with high potency and selectivity for lipoprotein-associated phospholipase A2 has been designed. In contrast to previously known inhibitors, these have been shown to act by a non-covalent and substrate competitive mechanism. 相似文献
3.
N. D. S. Grunstra L. Betti B. Fischer M. Haeusler M. Pavlicev E. Stansfield W. Trevathan N. M. Webb J. C. K. Wells K. R. Rosenberg P. Mitteroecker 《American journal of physical anthropology》2023,181(4):535-544
Compared to other primates, modern humans face high rates of maternal and neonatal morbidity and mortality during childbirth. Since the early 20th century, this “difficulty” of human parturition has prompted numerous evolutionary explanations, typically assuming antagonistic selective forces acting on maternal and fetal traits, which has been termed the “obstetrical dilemma.” Recently, there has been a growing tendency among some anthropologists to question the difficulty of human childbirth and its evolutionary origin in an antagonistic selective regime. Partly, this stems from the motivation to combat increasing pathologization and overmedicalization of childbirth in industrialized countries. Some authors have argued that there is no obstetrical dilemma at all, and that the difficulty of childbirth mainly results from modern lifestyles and inappropriate and patriarchal obstetric practices. The failure of some studies to identify biomechanical and metabolic constraints on pelvic dimensions is sometimes interpreted as empirical support for discarding an obstetrical dilemma. Here we explain why these points are important but do not invalidate evolutionary explanations of human childbirth. We present robust empirical evidence and solid evolutionary theory supporting an obstetrical dilemma, yet one that is much more complex than originally conceived in the 20th century. We argue that evolutionary research does not hinder appropriate midwifery and obstetric care, nor does it promote negative views of female bodies. Understanding the evolutionary entanglement of biological and sociocultural factors underlying human childbirth can help us to understand individual variation in the risk factors of obstructed labor, and thus can contribute to more individualized maternal care. 相似文献
4.
Ribosomal association of the yeast SAL4 (SUP45) gene product: implications for its role in translation fidelity and termination 总被引:8,自引:0,他引:8
Ian Stansfield Christopher M. Grant † Akhmaloka Mick F. Tuite 《Molecular microbiology》1992,6(23):3469-3478
The SAL4 gene of the yeast Saccharomyces cerevisiae encodes a novel translation factor (Sal4p) involved in maintaining translational fidelity. Using a polyclonal antibody raised against a Sal4p-beta-galactosidase fusion protein, Sal4p was shown to be almost exclusively associated with the ribosomal fraction. Even when the ribosomes were treated with 0.8 M KCl, only low levels of Sal4p were detected in the post-ribosomal supernatant, suggesting a very strong affinity between Sal4p and the ribosome. Analysis of the distribution of Sal4p in the ribosomal population revealed that it was principally associated with 40S subunits, monosomes and polysomes. Incubation in high salt concentrations (0.8 M KCl) suggested that the affinity of Sal4p for the 40S subunit was lower than that for monosomes or polysomes. The Sal4p:ribosome association was only maintained when ribosomes were prepared in the presence of the translation elongation inhibitor cycloheximide; in uninhibited cells much lower levels of Sal4p were detectable in the 'run-off' polysomes. In view of these data, and given the stoichiometry of Sal4p to individual ribosomal proteins (estimated at less than 1:20), we suggest that Sal4p plays an ancillary role in translation termination. 相似文献
5.
T. McIntyre L. J. Stansfield H. Bornemann J. Plötz M. N. Bester 《Polar Biology》2013,36(11):1693-1700
In order to gain insights into species-level behavioural responses to the physical environment, it is necessary to obtain information from various populations and at all times of year. We analysed the influences of physical environmental parameters on the mid-summer dive behaviour of Weddell seals (Leptonychotes weddellii) from a little-known population at Atka Bay, Antarctica. Dive depth distributions followed a typical bimodal pattern also exhibited by seals from other populations and seals targeted both shallow water layers of <50 m and depths near the seafloor. Increased stratification of temperature layers within the water column resulted in increased forage efforts by the seals through relatively high numbers of dives to the seafloor, as well as forage effort associated with shallow dives. We interpret these behavioural responses to be due to increased water temperature stratification resulting in the concentration of prey species in particular depth layers. 相似文献
6.
N C Barbet U Schneider S B Helliwell I Stansfield M F Tuite M N Hall 《Molecular biology of the cell》1996,7(1):25-42
Saccharomyces cerevisiae cells treated with the immunosuppressant rapamycin or depleted for the targets of rapamycin TOR1 and TOR2 arrest growth in the early G1 phase of the cell cycle. Loss of TOR function also causes an early inhibition of translation initiation and induces several other physiological changes characteristic of starved cells entering stationary phase (G0). A G1 cyclin mRNA whose translational control is altered by substitution of the UBI4 5' leader region (UBI4 is normally translated under starvation conditions) suppresses the rapamycin-induced G1 arrest and confers starvation sensitivity. These results suggest that the block in translation initiation is a direct consequence of loss of TOR function and the cause of the G1 arrest. We propose that the TORs, two related phosphatidylinositol kinase homologues, are part of a novel signaling pathway that activates eIF-4E-dependent protein synthesis and, thereby, G1 progression in response to nutrient availability. Such a pathway may constitute a checkpoint that prevents early G1 progression and growth in the absence of nutrients. 相似文献
7.
The folding, transport and modification of recombinant proteins in the constitutive secretory pathway of eukaryotic cell expression systems are reported to be a bottleneck in their production. We have utilised a proteomic approach to investigate the processes catalysed by proteins constituting the secretory pathway to further our understanding of those processes involved in high-level antibody secretion. We used GS-NS0 cell populations differing in qmAb to prepare enriched microsome fractions from each cell population at mid-exponential growth phase. These were analysed by 2-D PAGE to characterise the microsome protein component and test the hypothesis that bottlenecks in recombinant protein synthesis exist in these compartments, which are alleviated in high producers by the up-regulation of key secretory pathway proteins. Proteins whose abundance changed in a statistically significant manner with increasing qmAb were involved in a range of cellular functions: energy metabolism, mAb folding/assembly, cytoskeletal organisation and protein turnover. Amongst these were BiP and PDI, chaperones resident in the ER that interact with nascent immunoglobulins during their folding/assembly. However, our results suggest that there are diverse mechanisms by which these cells achieve qmAb. The results imply that cell-engineering strategies for improving qmAb should target proteins associated with altered functional phenotype identified in this study. 相似文献
8.
Fiona J. Stansfield 《PloS one》2015,10(5)
The importance of assigning an accurate estimate of age and sex to elephant carcasses found in the wild has increased in recent years with the escalation in levels of poaching throughout Africa. Irregularities identified in current ageing techniques prompted the development of a new method to describe molar progression throughout life. Elephant mandibles (n = 323) were studied and a point near the distal dental alveolus was identified as being most useful in ranking each jaw according to molar progression. These ‘Age Reference Lines’ were then associated with an age scale based on previous studies and Zimbabwean mandibles of known age. The new ranking produced a single age scale that proved useful for both male and female mandibles up to the maximum lifespan age of 70–75 years. Methods to aid in molar identification and the sexing of found jaws were also identified. 相似文献
9.
DegP, a member of the HtrA family of proteins, conducts critical bacterial protein quality control by both chaperone and proteolysis activities. The regulatory mechanisms controlling these two distinct activities, however, are unknown. DegP activation is known to involve a unique mechanism of allosteric binding, conformational changes and oligomer formation. We have uncovered a novel role for the residues at the PDZ1:protease interface in oligomer formation specifically for chaperone substrates of Chlamydia trachomatis HtrA (DegP homolog). We have demonstrated that CtHtrA proteolysis could be activated by allosteric binding and oligomer formation. The PDZ1 activator cleft was required for the activation and oligomer formation. However, unique to CtHtrA was the critical role for residues at the PDZ1:protease interface in oligomer formation when the activator was an in vitro chaperone substrate. Furthermore, a potential in vivo chaperone substrate, the major outer membrane protein (MOMP) from Chlamydia, was able to activate CtHtrA and induce oligomer formation. Therefore, we have revealed novel residues involved in the activation of CtHtrA which are likely to have important in vivo implications for outer membrane protein assembly. 相似文献
10.
The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. 总被引:10,自引:4,他引:10 下载免费PDF全文
I Stansfield K M Jones V V Kushnirov A R Dagkesamanskaya A I Poznyakovski S V Paushkin C R Nierras B S Cox M D Ter-Avanesyan M F Tuite 《The EMBO journal》1995,14(17):4365-4373
The product of the yeast SUP45 gene (Sup45p) is highly homologous to the Xenopus eukaryote release factor 1 (eRF1), which has release factor activity in vitro. We show, using the two-hybrid system, that in Saccharomyces cerevisiae Sup45p and the product of the SUP35 gene (Sup35p) interact in vivo. The ability of Sup45p C-terminally tagged with (His)6 to specifically precipitate Sup35p from a cell lysate was used to confirm this interaction in vitro. Although overexpression of either the SUP45 or SUP35 genes alone did not reduce the efficiency of codon-specific tRNA nonsense suppression, the simultaneous overexpression of both the SUP35 and SUP45 genes in nonsense suppressor tRNA-containing strains produced an antisuppressor phenotype. These data are consistent with Sup35p and Sup45p forming a complex with release factor properties. Furthermore, overexpression of either Xenopus or human eRF1 (SUP45) genes also resulted in anti-suppression only if that strain was also overexpressing the yeast SUP35 gene. Antisuppression is a characteristic phenotype associated with overexpression of both prokaryote and mitochondrial release factors. We propose that Sup45p and Sup35p interact to form a release factor complex in yeast and that Sup35p, which has GTP binding sequence motifs in its C-terminal domain, provides the GTP hydrolytic activity which is a demonstrated requirement of the eukaryote translation termination reaction. 相似文献