排序方式: 共有52条查询结果,搜索用时 0 毫秒
1.
2.
Ajith?R?Vancha Suman?Govindaraju Kishore?VL?Parsa Madhuri?Jasti Maribel?González-García Rafael?P?Ballestero "mailto:karp@tamuk.edu " title= "karp@tamuk.edu " itemprop= "email " data-track= "click " data-track-action= "Email author " data-track-label= " ">Email author 《BMC biotechnology》2004,4(1):23
Background
Several cell lines and primary cultures benefit from the use of positively charged extracellular matrix proteins or polymers that enhance their ability to attach to culture plates. Polyethyleneimine is a positively charged polymer that has gained recent attention as a transfection reagent. A less known use of this cationic polymer as an attachment factor was explored with several cell lines. 相似文献3.
Konrad Zych Yang Li Joeri K van der Velde Ronny VL Joosen Wilco Ligterink Ritsert C Jansen Danny Arends 《BMC bioinformatics》2015,16(1)
Background
Genetic markers and maps are instrumental in quantitative trait locus (QTL) mapping in segregating populations. The resolution of QTL localization depends on the number of informative recombinations in the population and how well they are tagged by markers. Larger populations and denser marker maps are better for detecting and locating QTLs. Marker maps that are initially too sparse can be saturated or derived de novo from high-throughput omics data, (e.g. gene expression, protein or metabolite abundance). If these molecular phenotypes are affected by genetic variation due to a major QTL they will show a clear multimodal distribution. Using this information, phenotypes can be converted into genetic markers.Results
The Pheno2Geno tool uses mixture modeling to select phenotypes and transform them into genetic markers suitable for construction and/or saturation of a genetic map. Pheno2Geno excludes candidate genetic markers that show evidence for multiple possibly epistatically interacting QTL and/or interaction with the environment, in order to provide a set of robust markers for follow-up QTL mapping.We demonstrate the use of Pheno2Geno on gene expression data of 370,000 probes in 148 A. thaliana recombinant inbred lines. Pheno2Geno is able to saturate the existing genetic map, decreasing the average distance between markers from 7.1 cM to 0.89 cM, close to the theoretical limit of 0.68 cM (with 148 individuals we expect a recombination every 100/148=0.68 cM); this pinpointed almost all of the informative recombinations in the population.Conclusion
The Pheno2Geno package makes use of genome-wide molecular profiling and provides a tool for high-throughput de novo map construction and saturation of existing genetic maps. Processing of the showcase dataset takes less than 30 minutes on an average desktop PC. Pheno2Geno improves QTL mapping results at no additional laboratory cost and with minimum computational effort. Its results are formatted for direct use in R/qtl, the leading R package for QTL studies. Pheno2Geno is freely available on CRAN under “GNU GPL v3”. The Pheno2Geno package as well as the tutorial can also be found at: http://pheno2geno.nl.Electronic supplementary material
The online version of this article (doi:10.1186/s12859-015-0475-6) contains supplementary material, which is available to authorized users. 相似文献4.
5.
6.
CA Kalva-Filho EZ Campos VL Andrade ASR Silva AM Zagatto MCS Lima M Papoti 《Biology of sport / Institute of Sport》2015,32(4):333-337
The aims of the present study were to investigate the relationship of aerobic and anaerobic parameters with 400 m performance, and establish which variable better explains long distance performance in swimming. Twenty-two swimmers (19.1±1.5 years, height 173.9±10.0 cm, body mass 71.2±10.2 kg; 76.6±5.3% of 400 m world record) underwent a lactate minimum test to determine lactate minimum speed (LMS) (i.e., aerobic capacity index). Moreover, the swimmers performed a 400 m maximal effort to determine mean speed (S400m), peak oxygen uptake () and total anaerobic contribution (CANA). The CANA was assumed as the sum of alactic and lactic contributions. Physiological parameters of 400 m were determined using the backward extrapolation technique ( and alactic contributions of CANA) and blood lactate concentration analysis (lactic anaerobic contributions of CANA). The Pearson correlation test and backward multiple regression analysis were used to verify the possible correlations between the physiological indices (predictor factors) and S400m (independent variable) (p < 0.05). Values are presented as mean ± standard deviation. Significant correlations were observed between S400m (1.4±0.1 m·s-1) and LMS (1.3±0.1 m·s-1; r = 0.80), (4.5±3.9 L·min-1; r = 0.72) and CANA (4.7±1.5 L·O2; r= 0.44). The best model constructed using multiple regression analysis demonstrated that LMS and explained 85% of the 400 m performance variance. When backward multiple regression analysis was performed, CANA lost significance. Thus, the results demonstrated that both aerobic parameters (capacity and power) can be used to predict 400 m swimming performance. 相似文献
7.
8.
Men H Zhao C Si W Murphy CN Spate L Liu Y Walters EM Samuel MS Prather RS Critser JK 《Theriogenology》2011,76(2):280-289
As the importance of swine models in biomedical research increases, it is essential to develop low-cost, high-throughput systems to cryopreserve swine germplasm for maintenance of these models. However, porcine embryos are exceedingly sensitive to low temperature and successful cryopreservation is generally limited to the use of vitrification in open systems that allow direct contact of the embryos with liquid nitrogen (LN2). This creates a high risk of pathogen transmission. Therefore, cryopreservation of porcine embryos in a “closed” system is of very high importance. In this study, in vitro-produced (IVP) porcine embryos were used to investigate cryosurvival and developmental potential of embryos cryopreserved in a closed system. Optimal centrifugal forces to completely disassociate intracellular lipids from blastomeres were investigated using Day-4 embryos. Cryosurvival of delipidated embryos was investigated by vitrifying the embryos immediately after centrifugation, or after development to blastocysts. In this study, centrifugation for 30 min at 13,000 g was adequate to completely delipidate the embryos; furthermore, these embryos were able to survive cryopreservation at a rate comparable to those centrifuged for only 12 min. When delipidated embryos were vitrified at the blastocyst stage, there was no difference in survival between embryos vitrified using OPS and 0.25 mL straws. Some embryos vitrified by each method developed to term. These experiments demonstrated that porcine embryos can be cryopreserved in a closed system after externalizing their intracellular lipids. This has important implications for banking swine models of human health and disease. 相似文献
9.
Background
Plasmodium chabaudi chabaudi can be considered as a rodent model of human malaria parasites in the genetic analysis of important characters such as drug resistance and immunity. Despite the availability of some genome sequence data, an extensive genetic linkage map is needed for mapping the genes involved in certain traits.Methods
The inheritance of 672 Amplified Fragment Length Polymorphism (AFLP) markers from two parental clones (AS and AJ) of P. c. chabaudi was determined in 28 independent recombinant progeny clones. These, AFLP markers and 42 previously mapped Restriction Fragment Length Polymorphism (RFLP) markers (used as chromosomal anchors) were organized into linkage groups using Map Manager software.Results
614 AFLP markers formed linkage groups assigned to 10 of 14 chromosomes, and 12 other linkage groups not assigned to known chromosomes. The genetic length of the genome was estimated to be about 1676 centiMorgans (cM). The mean map unit size was estimated to be 13.7 kb/cM. This was slightly less then previous estimates for the human malaria parasite, Plasmodium falciparumConclusion
The P. c. chabaudi genetic linkage map presented here is the most extensive and highly resolved so far available for this species. It can be used in conjunction with the genome databases of P. c chabaudi, P. falciparum and Plasmodium yoelii to identify genes underlying important phenotypes such as drug resistance and strain-specific immunity. 相似文献10.