首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  2013年   1篇
  2005年   4篇
  2003年   2篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1993年   1篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
This study investigates the biological significance of carotenoid oxidation products using inhibition of Na+-K+-ATPase activity as an index. β-Carotene was completely oxidized by hypochlorous acid and the oxidation products were analyzed by capillary gasliquid chromatography and high performance liquid chromatography. The Na+-K+-ATPase activity was assayed in the presence of these oxidized carotenoids and was rapidly and potently inhibited. This was demonstrated for a mixture of β-carotene oxidative breakdown products, β-Apo-10′-carotenal and retinal. Most of the β-carotene oxidation products were identified as aldehydic. The concentration of the oxidized carotenoid mixture that inhibited Na+-K+-ATPase activity by 50% (IC50) was equivalent to 10μM non-degraded β-carotene, whereas the IC50 for 4-hydroxy-2-nonenal, a major lipid peroxidation product, was 120 μM. Carotenoid oxidation products are more potent inhibitors of Na+-K+-ATPase than 4-hydroxy-2-nonenal. Enzyme activity was only partially restored with hydroxylamine and/or β-mercaptoethanol. Thus, in vitro binding of carotenoid oxidation products results in strong enzyme inhibition. These data indicate the potential toxicity of oxidative carotenoid metabolites and their activity on key enzyme regulators and signal modulators.  相似文献   
2.
Carotenoid supplementation in the treatment of diseases associated with oxidative stress has been recently questioned because of the cell damage and the increased risk of lung cancer in male smokers. Because of the complex role of neutrophils in lung diseases, we investigated whether carotenoid derivatives could affect respiratory burst and apoptosis of human neutrophils purified from peripheral blood. Stimulation of superoxide production was induced by nanomolar and micromolar concentrations of carotenoid cleavage products with aliphatic chains of different length, but not by carotenoids lacking the carbonyl moiety. The stimulatory effect of carotenoid cleavage products was observed in cells activated by phorbol myristate acetate (PMA), while a slight inhibition of superoxide production was noticed with cells activated by the chemotactic tripeptide N-formyl-Met-Leu-Phe (f-MLP). At higher concentrations, carotenoid cleavage products inhibited superoxide production in the presence of both PMA and f-MLP. In the presence of 20 microM carotenoid cleavage products, inhibition of superoxide production was accompanied by DNA fragmentation and increased level of intracellular caspase-3 activity.  相似文献   
3.
Absorbance Changes of Carotenoids in Different Solvents   总被引:1,自引:0,他引:1  
Carotenoids are typically measured in tissues with the high performance liquid chromatography (HPLC) and quantitation is usually done by calibrating with stock solutions in solvents. Four carotenoids including lutein, zeaxanthin, lycopene and β-carotene were dissolved in hexane and methanol respectively, and their absorbance characteristeris were compared. Lutein shows absorbance spectra that are almost independent of solvents at various concentrations. Spectra of zeaxanthin, lycopene and β-carotene were found to be more solvent-dependent. The absorbance of zeaxanthin at λmax is about 2 times larger in methanol than in hexane at the higher concentrations, and increased non-linearly with increasing concentration in hexane. The absorbance of lycopene at λmax in hexane is 4 fold larger than in methanol, but the absorbance of the methanol sample can be recovered by re-extracting this sample in hexane. The absorbance of β-carotene in hexane is larger than in methanol, and increased linearly with increasing concentration. But β-carotene showed a non-linear concentration effect in methanol. There are very small variations in λmax for all four carotenoids between hexane and methanol, due to differences in molar extinction coefficients. The non-linear concentration effects for these carotenoids are probably due to differences in solubility leading to the formation of microcrystals. Thus, care should be taken with quantitation of tissue carotenoid values, when they depend on measurement of concentrations in stock solutions.  相似文献   
4.
5.
Major carotenoids of human plasma and tissues were exposed to radical-initiated autoxidation conditions. The consumption of lutein and zeaxanthin, the only carotenoids in the retina, and lycopene and beta-carotene, the most effective quenchers of singlet oxygen in plasma, were compared. Under all conditions of free radical-initiated autoxidation of carotenoids which were investigated, the breakdown of lycopene and beta-carotene was much faster than that of lutein and zeaxanthin. Under the influence of UV light in presence of Rose Bengal, by far the highest breakdown rate was found for beta-carotene, followed by lycopene. Bleaching of carotenoid mixtures mediated by NaOCl, addition of azo-bis-isobutyronitril (AIBN), and the photoirradiation of carotenoid mixtures by natural sunlight lead to the following sequence of breakdown rates: lycopene > beta-carotene > zeaxanthin > lutein. The slow degradation of the xanthophylls zeaxanthin and lutein may be suggested to explain the majority of zeaxanthin and lutein in the retina of man and other species. In correspondence to that, the rapid degradation of beta-carotene and lycopene under the influence of natural sunlight and UV light is postulated to be the reason for the almost lack of those two carotenoids in the human retina. Nevertheless, a final proof of that theory is lacking.  相似文献   
6.
BACKGROUND: MDA, a major product of LPO, was shown to be increased in plasma of patients with end-stage renal failure (ESRF) undergoing hemodialysis (HD). Elevated oxidative stress in ESRF patients is a result of multiple pathogenetic factors. HD treatment has been shown to be one important cause of accelerated radical generation. The aim of our study was to examine whether treatment with a dialysis membrane which has alpha-tocopherol hydrophobically bonded to its surface (Excebrane by Terumo, Japan) can decrease oxidative stress due to HD. METHODS: 10 ESRF patients undergoing HD three times weekly were examined. First, analysis was done when patients were still dialysed with the membranes used before the study. Thereafter, samples were taken when patients were dialysed first time with the Excebrane membrane, and six weeks after Excebrane treatment. Samples were collected always before and after HD session. A method with HPLC-separation and flourimetric detection was used to measure plasma concentration of MDA. RESULTS: After HD with the regularly used membranes MDA was found significantly increased (before HD 1.92 [1.81-2.02] microM (median and interquartile ranges) vs. after HD 2.26 [2.02-2.60] microM, p < 0.05) suggesting that MDA was produced during HD. The first time Excebrane was used MDA was decreased significantly (before HD 2.04 [1.95-2.88] microM vs. after HD 1.35 [1.19-1.92] microM, p < 0.05). After six weeks of Excebrane treatment, plasma MDA did not change significantly during HD (before HD 2.01 [1.69-2.62] microM vs. after HD 1.95 [1.42-2.20] microM). CONCLUSION: Oxidative stress due to HD might be significantly decreased by the Excebrane membrane. However, after six weeks of treatment with Excebrane no effect was seen on the initial plasma concentration of MDA compared to the time before.  相似文献   
7.
After beta-carotene failed in certain clinical efficacy trials, there is evidence that the carotenoid might even be harmful, especially to smokers, when given in high dosages. These negative effects might be mediated in part also by carotenoid cleavage products (CPs) having a high reactivity towards biomolecules. The authors postulate that in certain tissues oxidative, nonenzymatic cleavage of carotenoids is carried out primarily by oxidants liberated by polymorphonuclear leukocytes (PML). In this study, we show that beta-carotene is degraded by stimulated PML in vitro. This gives the pathophysiological meaning to our further experiments in which beta-carotene degradation by hypochlorous acid and consecutive CP formation were investigated. While formation of apo-carotenals under these conditions has been studied before, this was not the case for short chain products. Performing gas chromatography mass spectrometry, we were able to identify for the first time 5,6-epoxi-beta-ionone, ionene, beta-cyclocitral, beta-ionone, dihydroactinidiolide, and 4-oxo-beta-ionone as CPs formed after degradation of beta-carotene mediated by hypochlorous acid. Our findings may be of biological relevance because beta-carotene CPs are highly reactive and, therefore, potentially toxic.  相似文献   
8.
Human neutrophils are short-lived cells that play important roles in host defense and acute inflammation by releasing hydrolytic and cytotoxic proteins and reactive oxygen derivatives. Apoptosis, a physiological mechanism for cell death, regulates both production and survival of neutrophils, representing a basic biological mechanism for this type of cells. Carotenoids may react with toxic oxygen metabolites released by neutrophils to form a multitude of carotenoid cleavage products that exert, in turn, relevant prooxidative biological effects. Recent data suggest that carotenoid oxidation products may affect neutrophil viability and function by exerting proapoptotic activity and interfering with superoxide production by activated cells. The prooxidant and proapoptotic activities of carotenoid oxidation products could account, at least in some cases, for the procancerogenic properties of carotenoid rich diet.  相似文献   
9.
Beta-carotene (BC) and other carotenoids are mainly considered as belonging to the group of micronutrients. As they are contained in fruit and vegetables and thus part of human diet, a regular low-dose intake from natural sources is normally assured. In the last decade high-dose supplementation with synthetic carotenoids has been used successfully in the treatment of diseases believed to be associated with oxidative stress. However, in a few clinical studies harmful effects have been observed as well, e.g., a higher incidence of lung cancer after BC was given in high doses to smokers. Our studies aim at shedding light on the causal mechanisms of the known side effects that we have investigated. Possibilities of preventing them are discussed. Obviously, on certain conditions of high-dose carotenoid supplementation, both the antioxidant and prooxidant reactions may arise. Carotenoid breakdown products (CBP) including very reactive aldehydes and epoxides are formed during oxidative attack in the course of antioxidative action. Carotenoid breakdown products inhibit state 3 respiration of isolated rat liver mitochondria at concentrations between 0.5 and 20 microM. In vivo stimulated neutrophils might represent an important source for the generation of CBP, and the lung might be a critical organ in CBP formation. The inhibition of mitochondrial state 3 respiration by CBP is accompanied by a reduced content of protein sulfhydryl groups, decreasing glutathione levels and redox state, and also elevated accumulation of malondialdehyde. Changes in mitochondrial membrane potential favour functional deterioration of the adenine nucleotide translocator (ANT). The findings reflect a basic mechanism of the side effects of BC supplementation in circumstances of severe oxidative stress induced by CBP representing a class of lipid oxidation products. We are striving for safe conditions of carotenoid supplementation in order to protect patients in need of this kind of medical treatment from possible side effects, such as unwanted prooxidative reactions.  相似文献   
10.
Free radical attack on beta-carotene results in the formation of high amounts of cleavage products with prooxidant activities towards subcellular organelles such as mitochondria, a finding which could provide an explanation for the contradictory results obtained with beta-carotene in clinical efficacy and cancer prevention trials. Since primary hepatocytes proved to be very sensitive indicators for the genotoxic action of suspect mutagens/carcinogens we therefore investigated a beta-carotene cleavage products mixture (CP), apo-8'-beta-carotenal (apo-8') and beta-carotene in the primary rat hepatocyte assay in the presence and absence of oxidative stress provided by hypoxia/reoxygenation (Hy/re). The endpoints tested were: the mitotic indices, the percentages of necrotic and apoptotic cells, micronucleated cells (MN), chromosomal aberrations (CA) and sister chromatid exchanges (SCE). The results obtained indicate a genotoxic potential of both CP and apo-8' already in the concentration range of 100 nM and 1 microM, i.e. at physiologically relevant levels of beta-carotene and beta-carotene breakdown products. In contrast, no significant cytotoxic effects of these substances were observed, nor did beta-carotene induce significant cytotoxic or genotoxic effects at concentrations ranging from 0.01 up to 10 microM. However, when beta-carotene is supplemented during oxidative stress induced by hypoxia/reoxygenation, a dose-dependent increase of CP is observed accompanied by increasing genotoxicity. Furthermore, when beta-carotene cleavage products were supplied during oxidative stress significant additional increases of genotoxic effects were observed, the additional increases indicating an additive effect of both exposures. Summarizing, these results provide strong evidence that beta-carotene breakdown products are responsible for the occurrence of carcinogenic effects found in the Alpha-Tocopherol Beta-carotene-Cancer prevention (ATBC) study and the beta-CArotene and RETinol Efficacy (CARET) Trial.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号