全文获取类型
收费全文 | 73篇 |
免费 | 8篇 |
专业分类
81篇 |
出版年
2024年 | 1篇 |
2023年 | 1篇 |
2021年 | 2篇 |
2020年 | 2篇 |
2018年 | 1篇 |
2017年 | 1篇 |
2016年 | 2篇 |
2015年 | 2篇 |
2014年 | 6篇 |
2013年 | 3篇 |
2012年 | 7篇 |
2011年 | 5篇 |
2010年 | 6篇 |
2009年 | 2篇 |
2008年 | 2篇 |
2007年 | 1篇 |
2006年 | 3篇 |
2005年 | 3篇 |
2004年 | 4篇 |
2003年 | 1篇 |
2002年 | 6篇 |
2001年 | 2篇 |
2000年 | 2篇 |
1999年 | 1篇 |
1998年 | 3篇 |
1997年 | 4篇 |
1996年 | 3篇 |
1995年 | 1篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1977年 | 2篇 |
排序方式: 共有81条查询结果,搜索用时 0 毫秒
1.
Improved varieties of legumes adapted to nutrient deficiency have the potential to improve food security for the poorest farmers. Tolerant varieties could be an inexpensive and biologically smart technology that improves soils while minimizing fertilizer costs. Yet other technologies that improve productivity and appear to be biologically sound have been rejected by farmers. To translate benefits to smallholder farmers, research on low-nutrient tolerant genes and crop improvement must keep farmer preferences and belief systems in the forefront. We review farmer participatory research on legume-intensification and soil fertility management options for smallholder farmers in Africa, including recent results from our work in Malawi and Kenya. We suggest that indeterminate, long-duration legumes are the best bet for producing high quality residues, compared to short-duration and determinate genotypes. This may be due to a long period of time to biologically fix nitrogen, acquire nutrients, photosynthesize and grain fill. Also, the indeterminate nature of long-duration varieties facilitates recovery from intermittent stresses such as drought or pest pressure. However, indeterminate growth habit is also associated with late maturity, moderate yield potential and high labour demand. These traits are not necessarily compatible with smallholder criteria for acceptable varieties. Malawi women farmers, for example, prioritized early maturity and low-labour requirement, as well as yield potential. To address complex farmer requirements, we suggest the purposeful combination of species with different growth habits; e.g. deep-rooted indeterminate long-duration pigeonpea interplanted with short-duration soyabean and groudnut varieties. On-farm trials in Malawi indicate that calorie production can be increased by 30% through pigeonpea-intensified systems. Farmers consistently indicate strong interest in these systems. In Kenya, a 55% yield increase was observed for a doubled-up pigeonpea system (a double row of pigeonpea intercropped with three maize rows) compared to traditional, low density intercrops. However, the need for improved pigeonpea varieties with high intercrop suitability, including reduced early branching, was highlighted by a farmer preference study in the same area. These examples illustrate the potential for participatory research methodologies to drive biophysical research in farmer-acceptable directions. 相似文献
2.
A mathematical model is proposed which systematically investigates complex calcium oscillations in pancreatic acinar cells. This model is based on calcium-induced calcium release via inositol trisphosphate receptors (IPR) and ryanodine receptors (RyR) and includes calcium modulation of inositol (1,4,5) trisphosphate (IP3) levels through feedback regulation of degradation and production. In our model, the apical and the basal regions are separated by a region containing mitochondria, which is capable of restricting Ca2+ responses to the apical region. We were able to reproduce the observed oscillatory patterns, from baseline spikes to sinusoidal oscillations. The model predicts that calcium-dependent production and degradation of IP3 is a key mechanism for complex calcium oscillations in pancreatic acinar cells. A partial bifurcation analysis is performed which explores the dynamic behaviour of the model in both apical and basal regions. 相似文献
3.
Snapp EL Reinhart GA Bogert BA Lippincott-Schwartz J Hegde RS 《The Journal of cell biology》2004,164(7):997-1007
Protein translocons of the mammalian endoplasmic reticulum are composed of numerous functional components whose organization during different stages of the transport cycle in vivo remains poorly understood. We have developed generally applicable methods based on fluorescence resonance energy transfer (FRET) to probe the relative proximities of endogenously expressed translocon components in cells. Examination of substrate-engaged translocons revealed oligomeric assemblies of the Sec61 complex that were associated to varying degrees with other essential components including the signal recognition particle receptor TRAM and the TRAP complex. Remarkably, these components not only remained assembled but also had a similar, yet distinguishable, organization both during and after nascent chain translocation. The persistence of preassembled and complete translocons between successive rounds of transport may facilitate highly efficient translocation in vivo despite temporal constraints imposed by ongoing translation and a crowded cellular environment. 相似文献
4.
Main conclusion
Co-expression of a lesquerella fatty acid elongase and the castor fatty acid hydroxylase in camelina results in higher hydroxy fatty acid containing seeds with normal oil content and viability. Producing hydroxy fatty acids (HFA) in oilseed crops has been a long-standing goal to replace castor oil as a renewable source for numerous industrial applications. A fatty acid hydroxylase, RcFAH, from Ricinus communis, was introduced into Camelina sativa, but yielded only 15 % of HFA in its seed oil, much lower than the 90 % found in castor bean. Furthermore, the transgenic seeds contained decreased oil content and the germination ability was severely affected. Interestingly, HFA accumulation was significantly increased in camelina seed when co-expressing RcFAH with a fatty acid condensing enzyme, LfKCS3, from Physaria fendleri, a native HFA accumulator relative to camelina. The oil content and seed germination of the transgenic seeds also appeared normal compared to non-transgenics. LfKCS3 has been previously characterized to specifically elongate the hydroxylated ricinoleic acid to lesquerolic acid, the 20-carbon HFA found in lesquerella oil. The elongation reaction may facilitate the HFA flux from phosphatidylcholine (PC), the site of HFA formation, into the acyl-CoA pool for more efficient utilization in triacylglycerol (TAG) biosynthesis. This was demonstrated by increased HFA accumulation in TAG concurrent with reduced HFA content in PC during camelina seed development, and increased C20-HFA in HFA-TAG molecules. These effects of LfKCS3 thus may effectively relieve the bottleneck for HFA utilization in TAG biosynthesis and the feedback inhibition to fatty acid synthesis, result in higher HFA accumulation and restore oil content and seed viability. 相似文献5.
Sieglinde S. Snapp Kanchan U. Date William Kirk Katherine O’Neil Amy Kremen George Bird 《Plant and Soil》2007,294(1-2):55-72
Brassica species are increasingly being used as cover crops to suppress soil-borne diseases in potato cropping systems. Experiments
were conducted in controlled environments and in the field to evaluate the effects of cover crop root or shoot or a combination
of root and shoot tissues on potato root and tuber health. In a lab assay we examined the extent to which volatile compounds
released from tissues of two cover crop species, rye (Cereale secale L.) and oriental mustard (Brassica juncea L.), could inhibit mycelium growth of two important potato diseases, Rhizoctonia solani and Pythium ultimum. Twenty-four hours into the lab assay, volatile compounds from all residues suppressed fungal growth. After 48 h, marked suppression
of hyphal growth continued in the presence of mustard residues but not in the presence of rye tissues or the control without
tissues. A 75 L volume container experiment evaluated the effect of incorporating different quantities of mustard shoot and
root tissues (none, comparable to field level and fourfold field level) into R. solani and P. ultimum infested soil on potato growth, root health and tuber disease. In the container study, incorporating mustard shoots at the
highest dose increased potato yield by 54% and reduced disease rating to 2.3 compared to a severe rating of 4.4 in the control.
In the field trial, potato growth, root health and tuber disease levels were evaluated in plots where disease management involved
either incorporation of mustard or rye cover crop roots, shoots and whole plants (roots plus shoots) or standard farmer practice
of a fumigated fallow as a control. White root tissue was used as a health indicator, and averaged 58 and 78% in the fumigated
control and mustard cover crop treatments, respectively. The highest healthy root tissue status (91%) was recorded where whole
plants of mustard were incorporated. In contrast to the visual assessment of root and tuber health, tuber yield in the field
was not influenced by cover crop treatment. Across experiments, the incorporation of or exposure to whole mustard plants was
consistently effective at suppressing soil-borne fungi and promoting healthy roots and tubers, especially at higher rates
of biomass. Mustard should be managed so as to maximize incorporated biomass for effective biofumigation. Multipurpose management
requiring removal of mustard shoots is incompatible with promoting potato rhizosphere health. 相似文献
6.
Karen R. Snapp Ron Craig Michael Herron Robert D. Nelson Lloyd M. Stoolman Geoffrey S. Kansas 《The Journal of cell biology》1998,142(1):263-270
Interactions between P-selectin, expressed on endothelial cells and activated platelets, and its leukocyte ligand, a homodimer termed P-selectin glycoprotein ligand-1 (PSGL-1), mediate the earliest adhesive events during an inflammatory response. To investigate whether dimerization of PSGL-1 is essential for functional interactions with P-selectin, a mutant form of PSGL-1 was generated in which the conserved membrane proximal cysteine was mutated to alanine (designated C320A). Western blotting under both denaturing and native conditions of the C320A PSGL-1 mutant isolated from stably transfected cells revealed expression of only a monomeric form of PSGL-1. In contrast to cells cotransfected with α1-3 fucosyltransferase-VII (FucT-VII) plus PSGL-1, K562 cells expressing FucT-VII plus C320A failed to bind COS cells transfected with P-selectin in a low shear adhesion assay, or to roll on CHO cells transfected with P-selectin under conditions of physiologic flow. In addition, C320A transfectants failed to bind chimeric P-selectin fusion proteins. Both PSGL-1 and C320A were uniformly distributed on the surface of transfected K562 cells. Thus, dimerization of PSGL-1 through the single, conserved, extracellular cysteine is essential for functional recognition of P-selectin. 相似文献
7.
Helene M. Langevin Kirsten N. Storch Robert R. Snapp Nicole A. Bouffard Gary J. Badger Alan K. Howe Douglas J. Taatjes 《Histochemistry and cell biology》2010,133(4):405-415
Studies in cultured cells have shown that nuclear shape is an important factor influencing nuclear function, and that mechanical
forces applied to the cell can directly affect nuclear shape. In a previous study, we demonstrated that stretching of whole
mouse subcutaneous tissue causes dynamic cytoskeletal remodeling with perinuclear redistribution of α-actin in fibroblasts
within the tissue. We have further shown that the nuclei of these fibroblasts have deep invaginations containing α-actin.
In the current study, we hypothesized that tissue stretch would cause nuclear remodeling with a reduced amount of nuclear
invagination, measurable as a change in nuclear concavity. Subcutaneous areolar connective tissue samples were excised from
28 mice and randomized to either tissue stretch or no stretch for 30 min, then examined with histochemistry and confocal microscopy.
In stretched tissue (vs. non-stretched), fibroblast nuclei had a larger cross-sectional area (P < 0.001), smaller thickness (P < 0.03) in the plane of the tissue, and smaller relative concavity (P < 0.005) indicating an increase in nuclear convexity. The stretch-induced loss of invaginations may have important influences
on gene expression, RNA trafficking and/or cell differentiation. 相似文献
8.
Patrick M. Ewing Xinyi Tu Bryan C. Runck Alison Nord Regis Chikowo Sieglinde S. Snapp 《Global Change Biology》2023,29(6):1471-1483
Increasing soil organic carbon (SOC) stocks is increasingly targeted as a key strategy in climate change mitigation and improved ecosystem resiliency. Agricultural land, a dominant global land use, provides substantial challenges and opportunities for global carbon sequestration. Despite this, global estimates of soil carbon sequestration potential often exclude agricultural land and estimates are coarse for regions in the Global South. To address these discrepancies and improve estimates, we develop a hybrid, data-augmented database approach to better estimate the magnitude of SOC sequestration potential of agricultural soils. With high-resolution (30 m) soil maps of Africa developed by the International Soils Database (iSDA) and Malawi as a case study, we create a national adjustment using site-specific soil data retrieved from 1160 agricultural fields. We use a benchmark approach to estimate the amount of SOC Malawian agricultural soils can sequester, accounting for edaphic and climatic conditions, and calculate the resulting carbon gap. Field measurements of SOC stocks and sequestration potentials were consistently larger than iSDA predictions, with an average carbon gap of 4.42 ± 0.23 Mg C ha−1 to a depth of 20 cm, with some areas exceeding 10 Mg C ha−1. Augmenting iSDA predictions with field data also improved sensitivity to identify areas with high SOC sequestration potential by 6%—areas that may benefit from improved management practices. Overall, we estimate that 6.8 million ha of surface soil suitable for agriculture in Malawi has the potential to store 274 ± 14 Tg SOC. Our approach illustrates how ground truthing efforts remain essential to reduce errors in continent-wide soil carbon predictions for local and regional use. This work begins efforts needed across regions to develop soil carbon benchmarks that inform policies and identify high-impact areas in the effort to increase SOC globally. 相似文献
9.
KR Rupesh PL PremKumar Vasanth V Shiva Kumar Seetharaman S Jayachandran 《BMC microbiology》2002,2(1):5-7
Background
Seeds of the legume plant Lathyrus sativus, which is grown in arid and semi arid tropical regions, contain Diamino Propionic acid (DAP). DAP is a neurotoxin, which, when consumed, causes a disease called Lathyrism. Lathryrism may manifest as Neurolathyrism or Osteolathyrism, in which the nervous system, and bone formation respectively, are affected. DAP ammonia lyase is produced by a few microorganisms such as Salmonella typhi, Salmonella typhimurium and Pseudomonas, and is capable of detoxifying DAP. 相似文献10.