首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   2篇
  80篇
  2021年   1篇
  2019年   1篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   1篇
  2013年   5篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2009年   4篇
  2008年   4篇
  2007年   3篇
  2006年   4篇
  2005年   6篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1981年   1篇
排序方式: 共有80条查询结果,搜索用时 15 毫秒
1.
Eleven bacterial and two yeast strains, four of which were previously identified as having activity on a lightly cross-linked carboxymethyl cellulose (CLD-2) found in one type of superabsorbent tampon, were grown on a variety of substrates, most containing cellulosics. None produced detectable amounts of cellulases, but all elaborated beta-glucosidase. None of these 13 strains nor 3 commercially obtained beta-glucosidase preparations could hydrolyze CLD-2, although a commercial cellulase and two other bacterial preparations known to produce cellulases could. Based on these results, it appears that previous work suggesting that the degradation of CLD-2 by vaginal microbes and beta-glucosidase is implicated in the production by Staphylococcus aureus of toxin causing toxic shock syndrome must be reevaluated.  相似文献   
2.
3.

Introduction

Exercise training has emerged as a promising therapeutic strategy to counteract physical dysfunction in adult systemic lupus erythematosus. However, no longitudinal studies have evaluated the effects of an exercise training program in childhood-onset systemic lupus erythematosus (C-SLE) patients. The objective was to evaluate the safety and the efficacy of a supervised aerobic training program in improving the cardiorespiratory capacity in C-SLE patients.

Methods

Nineteen physically inactive C-SLE patients were randomly assigned into two groups: trained (TR, n = 10, supervised moderate-intensity aerobic exercise program) and non-trained (NT, n = 9). Gender-, body mass index (BMI)- and age-matched healthy children were recruited as controls (C, n = 10) for baseline (PRE) measurements only. C-SLE patients were assessed at PRE and after 12 weeks of training (POST). Main measurements included exercise tolerance and cardiorespiratory measurements in response to a maximal exercise (that is, peak VO2, chronotropic reserve (CR), and the heart rate recovery (ΔHRR) (that is, the difference between HR at peak exercise and at both the first (ΔHRR1) and second (ΔHRR2) minutes of recovery after exercise).

Results

The C-SLE NT patients did not present changes in any of the cardiorespiratory parameters at POST (P > 0.05). In contrast, the exercise training program was effective in promoting significant increases in time-to-exhaustion (P = 0.01; ES = 1.07), peak speed (P = 0.01; ES = 1.08), peak VO2 (P = 0.04; ES = 0.86), CR (P = 0.06; ES = 0.83), and in ΔHRR1 and ΔHRR2 (P = 0.003; ES = 1.29 and P = 0.0008; ES = 1.36, respectively) in the C-SLE TR when compared with the NT group. Moreover, cardiorespiratory parameters were comparable between C-SLE TR patients and C subjects after the exercise training intervention, as evidenced by the ANOVA analysis (P > 0.05, TR vs. C). SLEDAI-2K scores remained stable throughout the study.

Conclusion

A 3-month aerobic exercise training was safe and capable of ameliorating the cardiorespiratory capacity and the autonomic function in C-SLE patients.

Trial registration

NCT01515163.  相似文献   
4.

Background and Purpose

In acute ischemic stroke (AIS) management, CT-based thrombus density has been associated with treatment success. However, currently used thrombus measurements are prone to inter-observer variability and oversimplify the heterogeneous thrombus composition. Our aim was first to introduce an automated method to assess the entire thrombus density and then to compare the measured entire thrombus density with respect to current standard manual measurements.

Materials and Method

In 135 AIS patients, the density distribution of the entire thrombus was determined. Density distributions were described using medians, interquartile ranges (IQR), kurtosis, and skewedness. Differences between the median of entire thrombus measurements and commonly applied manual measurements using 3 regions of interest were determined using linear regression.

Results

Density distributions varied considerably with medians ranging from 20.0 to 62.8 HU and IQRs ranging from 9.3 to 55.8 HU. The average median of the thrombus density distributions (43.5 ± 10.2 HU) was lower than the manual assessment (49.6 ± 8.0 HU) (p<0.05). The difference between manual measurements and median density of entire thrombus decreased with increasing density (r = 0.64; p<0.05), revealing relatively higher manual measurements for low density thrombi such that manual density measurement tend overestimates the real thrombus density.

Conclusions

Automatic measurements of the full thrombus expose a wide variety of thrombi density distribution, which is not grasped with currently used manual measurement. Furthermore, discrimination of low and high density thrombi is improved with the automated method.  相似文献   
5.
The current status of kinetoplastids phylogeny and evolution is discussed in view of the recent progresses on genomics. Some ideas on a potential framework for the evolutionary genomics of kinetoplastids are presented.  相似文献   
6.

Background  

Remote homology detection is a challenging problem in Bioinformatics. Arguably, profile Hidden Markov Models (pHMMs) are one of the most successful approaches in addressing this important problem. pHMM packages present a relatively small computational cost, and perform particularly well at recognizing remote homologies. This raises the question of whether structural alignments could impact the performance of pHMMs trained from proteins in the Twilight Zone, as structural alignments are often more accurate than sequence alignments at identifying motifs and functional residues. Next, we assess the impact of using structural alignments in pHMM performance.  相似文献   
7.
Zameer A  Schulz P  Wang MS  Sierks MR 《Biochemistry》2006,45(38):11532-11539
Alzheimer's disease (AD) is characterized by the deposition of amyloid-beta (Abeta) protein in the brain. Immunization studies have demonstrated that anti-Abeta antibodies reduce Abeta deposition and improve clinical symptoms seen in AD. However, conventional antibody-based therapies risk an inflammatory response that can result in meningoencephalitis and cerebral hemorrhage. Here we report on the development of human-based single chain variable domain antibody fragments (scFvs) directed against the Abeta 25-35 region as potential therapeutics for AD that do not risk an inflammatory response. The 25-35 region of Abeta represents a promising therapeutic target since it promotes aggregation and is highly toxic. Two scFvs with differing affinities for Abeta were studied, and both inhibited aggregation of Abeta42 as determined by thioflavin T binding assay and atomic force microscopy analysis and blocked Abeta-induced toxicity toward human neuroblastoma SH-SY5Y cells as determined by MTT and LDH release assays. These results provide additional evidence that scFvs against Abeta provide an attractive alternative to more conventional antibody-based therapeutics for controlling aggregation and toxicity of Abeta.  相似文献   
8.
9.
The Amyloid-β (Aβ) peptide is a major component of the amyloid plaques associated with Alzheimer's disease (AD). Recent studies suggest that the most toxic forms of Aβ are small, soluble oligomeric aggregates. Here, we report the isolation and characterization of a single-chain variable domain (scFv) antibody isolated against oligomeric Aβ using a protocol developed in our laboratory that combines phage display technology and atomic force microscopy (AFM). Starting with a randomized, single framework phage display library, after three rounds of selection against oligomeric Aβ, we identified an scFv that bound oligomeric Aβ specifically, but not monomeric or fibrillar forms. The anti-oligomeric scFv inhibits Aβ aggregation and toxicity, and reduces the toxicity of preformed oligomeric Aβ towards human neuroblastoma cells. When used to probe samples of human brain tissue, the scFv reacted with AD tissue but not a healthy control or Parkinson's disease brain samples. The anti-oligomeric Aβ scFv therefore has potential therapeutic and diagnostic applications in specifically targeting or identifying the toxic morphologies of Aβ in AD brains.  相似文献   
10.

Background

Misfolding- and aggregation-prone proteins underlying Parkinson''s, Huntington''s and Machado-Joseph diseases, namely α-synuclein, huntingtin, and ataxin-3 respectively, adopt numerous intracellular conformations during pathogenesis, including globular intermediates and insoluble amyloid-like fibrils. Such conformational diversity has complicated research into amyloid-associated intracellular dysfunction and neurodegeneration. To this end, recombinant single-chain Fv antibodies (scFvs) are compelling molecular tools that can be selected against specific protein conformations, and expressed inside cells as intrabodies, for investigative and therapeutic purposes.

Methodology/Principal Findings

Using atomic force microscopy (AFM) and live-cell fluorescence microscopy, we report that a human scFv selected against the fibrillar form of α-synuclein targets isomorphic conformations of misfolded polyglutamine proteins. When expressed in the cytoplasm of striatal cells, this conformation-specific intrabody co-localizes with intracellular aggregates of misfolded ataxin-3 and a pathological fragment of huntingtin, and enhances the aggregation propensity of both disease-linked polyglutamine proteins. Using this intrabody as a tool for modulating the kinetics of amyloidogenesis, we show that escalating aggregate formation of a pathologic huntingtin fragment is not cytoprotective in striatal cells, but rather heightens oxidative stress and cell death as detected by flow cytometry. Instead, cellular protection is achieved by suppressing aggregation using a previously described intrabody that binds to the amyloidogenic N-terminus of huntingtin. Analogous cytotoxic results are observed following conformational targeting of normal or polyglutamine-expanded human ataxin-3, which partially aggregate through non-polyglutamine domains.

Conclusions/Significance

These findings validate that the rate of aggregation modulates polyglutamine-mediated intracellular dysfunction, and caution that molecules designed to specifically hasten aggregation may be detrimental as therapies for polyglutamine disorders. Moreover, our findings introduce a novel antibody-based tool that, as a consequence of its general specificity for fibrillar conformations and its ability to function intracellularly, offers broad research potential for a variety of human amyloid diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号