全文获取类型
收费全文 | 165篇 |
免费 | 3篇 |
专业分类
168篇 |
出版年
2024年 | 2篇 |
2023年 | 3篇 |
2022年 | 7篇 |
2021年 | 7篇 |
2020年 | 3篇 |
2019年 | 3篇 |
2018年 | 2篇 |
2017年 | 7篇 |
2016年 | 4篇 |
2015年 | 9篇 |
2014年 | 2篇 |
2013年 | 9篇 |
2012年 | 11篇 |
2011年 | 13篇 |
2010年 | 5篇 |
2009年 | 15篇 |
2008年 | 7篇 |
2007年 | 2篇 |
2006年 | 6篇 |
2005年 | 4篇 |
2004年 | 8篇 |
2003年 | 5篇 |
2002年 | 4篇 |
2001年 | 5篇 |
2000年 | 2篇 |
1999年 | 4篇 |
1998年 | 2篇 |
1994年 | 2篇 |
1992年 | 3篇 |
1991年 | 1篇 |
1989年 | 1篇 |
1988年 | 3篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1981年 | 1篇 |
1966年 | 3篇 |
排序方式: 共有168条查询结果,搜索用时 15 毫秒
1.
Pawar P Shin PK Mousa SA Ross JM Konstantopoulos K 《Journal of immunology (Baltimore, Md. : 1950)》2004,173(2):1258-1265
The interaction between surface components on the invading pathogen and host cells such as platelets plays a key role in the regulation of endovascular infections. However, the mechanisms mediating Staphylococcus aureus binding to platelets under shear remain largely unknown. This study was designed to investigate the kinetics and molecular requirements of platelet-S. aureus interactions in bulk suspensions subjected to a uniform shear field. Hydrodynamic shear-induced collisions augment platelet-S. aureus binding, which is further potentiated by platelet activation with stromal derived factor-1beta. Peak adhesion efficiency occurs at low shear (100 s(-1)) and decreases with increasing shear. The molecular interaction of platelet alpha(IIb)beta(3) with bacterial clumping factor A through fibrinogen bridging is necessary for stable bacterial binding to activated platelets under shear. Although this pathway is sufficient at low shear (=400 s(-1)), the involvement of platelet gpIb and staphylococcal protein A through von Willebrand factor bridging is essential for optimal recruitment of S. aureus cells by platelets in the high shear regime. IgG plays an inhibitory role in the adhesion process, presumably by interfering with the binding of von Willebrand factor to staphylococcal protein A. This study demonstrates that platelet activation and a fluid-mechanical environment representative of the vasculature affect platelet-S. aureus cell-adhesive interactions pertinent to the process of S. aureus-induced bloodstream infections. 相似文献
2.
Ali Hebeish Mohamed Hashem Nihal Shaker Mohamed Ramadan Bahiya El-Sadek Marwa Abdel Hady 《Carbohydrate polymers》2009,78(4):961-972
A thorough investigation into conditions appropriate for effecting combined eco-friendly bioscouring and/or bleaching of cotton-based fabrics was undertaken. Fabrics used include cotton, grey mercerized cotton, cotton/polyester blend 50/50 and cotton/polyester blend 35/65. The four cotton-based fabric were subjected to bioscouring by single use of alkaline pectinase enzymes or by using binary mixtures of alkaline pectinase and cellulase enzymes under a variety of conditions. Results of bioscouring show that, the bioscoured substrates exhibit fabrics performances which are comparable with these of the conventional alkali scouring. It has been also found that, incorporation of ethylenediaminetetraacetic acid (EDTA) in the bioscouring with mixture from alkaline pectinase and cellulase improves the performance of the bioscoured fabrics. Addition of β-cyclodextrin to the bioscouring solution using alkaline pectinase in admixtures with cellulase acts in favor of technical properties and performance of the bioscoured fabrics. Concurrent bioscouring and bleaching by in situ formed peracetic acid using tetraacetylethylenediamine (TAED) and H2O2 was also investigated. The results reveal unequivocally that the environmentally sound technology brought about by current development is by far the best. The new development involves a single-stage process for full purification/preparation of cotton textiles. The new development at its optimal comprises treatment of the fabric with an aqueous formulation consisting of alkaline pectinase enzyme (2 g/L), TAED (15 g/L), H2O2 (5 g/L), nonionic wetting agent (0.5 g/L) and sodium silicate (2 g/L). The treatment is carried out at 60 °C for 60 min. Beside the advantages of the new development with respect to major technical fabric properties, it is eco-friendly and reproducible. This advocates the new development for mill trials. 相似文献
3.
4.
A M Ibrahim Y M Shaker M F el-Hawary K I Fayek M M Zahran N K el-Shawarby 《Clinical physiology and biochemistry》1985,3(1):16-22
Total serum protein levels in 70 patients with urolithiasis were not significantly different from those in 20 control subjects, although certain variations were detected in individual protein patterns. In contrast, total urinary protein was significantly higher in patients with urolithiasis. 4-6 different components, i.e., albumin, alpha 1-acidic glycoprotein, alpha 1-antitrypsin, Gc-globulin, fibrinogen and immunoglobulin G, were found in the matrices of calculi and in urine, suggesting that proteinuria may play a role in the formation of stones in patients with urolithiasis. 相似文献
5.
Tarek Kamal Motawi Olfat Gamil Shaker Shohda Assem El-Maraghy Mahmoud Ahmed Senousy 《PloS one》2015,10(3)
MicroRNAs are messengers during interferon-virus interplay and are involved in antiviral immunity, however, little is known about interferon-related microRNAs regarding their detection in serum and their potential use as non-invasive diagnostic and prognostic biomarkers in chronic hepatitis C (CHC). To elucidate some of the molecular aspects underlying failure of pegylated interferon-α/ribavirin therapy, we investigated pretreatment expression profiles of seven selected interferon-related microRNAs (miR-146a, miR-34a, miR-130a, miR-19a, miR-192, miR-195, and miR-296) by quantitative RT-PCR custom array technology in serum of Egyptian CHC genotype 4 patients and whether their pretreatment levels would predict patient response to the combination therapy. One hundred and six CHC patients and forty matched healthy controls were included. Patients were divided into sustained virological response (SVR) and non-responder (NR) groups. Serum miR-34a, miR-130a, miR-19a, miR-192, miR-195, and miR-296 were upregulated, whereas serum miR-146a was downregulated in CHC compared to controls. Significant correlations were found between expression levels of studied microRNAs and also with clinical data. Pretreatment levels of miR-34a, miR-130a, and miR-195 were significantly higher, whereas miR-192 and miR-296 levels were significantly lower in SVR than NR patients. miR-19a and miR-146a levels were not significantly different between the two groups. miR-34a was superior to differentiate CHC from controls, whereas miR-296 was superior to discriminate SVR from NR patients by receiver operating characteristic analysis. Multivariate logistic analysis revealed miR-34a and miR-195 as independent predictors for SVR and miR-192 as an independent variable for non-response. In conclusion, pretreatment expression profiles of five interferon-related microRNAs are associated with treatment outcome in CHC. Of these, miR-34a, miR-195, and miR-192 could predict treatment response. The profiling results could be used as novel non-invasive diagnostic and prognostic pharmacogenetic biomarkers for treatment personalization in CHC and could help to identify new microRNA-based antivirals. 相似文献
6.
Cantrup R Dixit R Palmesino E Bonfield S Shaker T Tachibana N Zinyk D Dalesman S Yamakawa K Stell WK Wong RO Reese BE Kania A Sauvé Y Schuurmans C 《PloS one》2012,7(3):e32795
Background
The retina has a unique three-dimensional architecture, the precise organization of which allows for complete sampling of the visual field. Along the radial or apicobasal axis, retinal neurons and their dendritic and axonal arbors are segregated into layers, while perpendicular to this axis, in the tangential plane, four of the six neuronal types form patterned cellular arrays, or mosaics. Currently, the molecular cues that control retinal cell positioning are not well-understood, especially those that operate in the tangential plane. Here we investigated the role of the PTEN phosphatase in establishing a functional retinal architecture.Methodology/Principal Findings
In the developing retina, PTEN was localized preferentially to ganglion, amacrine and horizontal cells, whose somata are distributed in mosaic patterns in the tangential plane. Generation of a retina-specific Pten knock-out resulted in retinal ganglion, amacrine and horizontal cell hypertrophy, and expansion of the inner plexiform layer. The spacing of Pten mutant mosaic populations was also aberrant, as were the arborization and fasciculation patterns of their processes, displaying cell type-specific defects in the radial and tangential dimensions. Irregular oscillatory potentials were also observed in Pten mutant electroretinograms, indicative of asynchronous amacrine cell firing. Furthermore, while Pten mutant RGC axons targeted appropriate brain regions, optokinetic spatial acuity was reduced in Pten mutant animals. Finally, while some features of the Pten mutant retina appeared similar to those reported in Dscam-mutant mice, PTEN expression and activity were normal in the absence of Dscam.Conclusions/Significance
We conclude that Pten regulates somal positioning and neurite arborization patterns of a subset of retinal cells that form mosaics, likely functioning independently of Dscam, at least during the embryonic period. Our findings thus reveal an unexpected level of cellular specificity for the multi-purpose phosphatase, and identify Pten as an integral component of a novel cell positioning pathway in the retina. 相似文献7.
Lang IM Dana N Medda BK Shaker R 《American journal of physiology. Gastrointestinal and liver physiology》2002,283(3):G529-G536
We investigated the mechanisms of airway protection and bolus transport during retching and vomiting by recording responses of the pharyngeal, laryngeal, and hyoid muscles and comparing them with responses during swallowing and responses of the gastrointestinal tract. Five dogs were chronically instrumented with electrodes on the striated muscles and strain gauges on smooth muscles. Retching and vomiting were stimulated by apomorphine (5-10 ug/kg iv). During retching, the hyoid and thyroid descending and laryngeal abductor muscles were activated; between retches, the hyoid, thyroid, and pharyngeal elevating, and laryngeal adductor muscles were activated. Vomiting always occurred during the ascending phase of retching and consisted of three sequential phases of hyoid and pharyngeal muscle activation culminating in simultaneous activation of all recorded elevating and descending laryngeal, hyoid, and pharyngeal muscles. Retrograde activation of esophagus and pharyngeal muscles occurred during the later phases, and laryngeal adductor was maximally activated in all phases of the vomit. During swallowing, the laryngeal adductor activation was followed immediately by brief activation of the laryngeal abductor. We concluded that retching functions to mix gastric contents with refluxed intestinal secretions and to impart an orad momentum to the bolus before vomiting. During retches, the airway is protected by glottal closure, and between retches, it is protected by ascent of the larynx and closure of the upper esophageal sphincter. The airway is protected by maximum glottal closure during vomiting. During swallowing, the airway is protected by laryngeal elevation and glottal closure followed by brief opening of the glottis, which may release subglottal pressure expelling material from the laryngeal vestibule. 相似文献
8.
A Babaei BD Ward S Ahmad A Patel A Nencka SJ Li J Hyde R Shaker 《American journal of physiology. Gastrointestinal and liver physiology》2012,303(5):G600-G609
Functional MRI (fMRI) studies have demonstrated that a number of brain regions (cingulate, insula, prefrontal, and sensory/motor cortices) display blood oxygen level-dependent (BOLD) positive activity during swallow. Negative BOLD activations and reproducibility of these activations have not been systematically studied. The aim of our study was to investigate the reproducibility of swallow-related cortical positive and negative BOLD activity across different fMRI sessions. We studied 16 healthy volunteers utilizing an fMRI event-related analysis. Individual analysis using a general linear model was used to remove undesirable signal changes correlated with motion, white matter, and cerebrospinal fluid. The group analysis used a mixed-effects multilevel model to identify active cortical regions. The volume and magnitude of a BOLD signal within each cluster was compared between the two study sessions. All subjects showed significant clustered BOLD activity within the known areas of cortical swallowing network across both sessions. The cross-correlation coefficient of percent fMRI signal change and the number of activated voxels across both positive and negative BOLD networks were similar between the two studies (r ≥ 0.87, P < 0.0001). Swallow-associated negative BOLD activity was comparable to the well-defined "default-mode" network, and positive BOLD activity had noticeable overlap with the previously described "task-positive" network. Swallow activates two parallel cortical networks. These include a positive and a negative BOLD network, respectively, correlated and anticorrelated with swallow stimulus. Group cortical activity maps, as well as extent and amplitude of activity induced by volitional swallowing in the cortical swallowing network, are reproducible between study sessions. 相似文献
9.
Ashok Jangra Chandra Shaker Sriram Shubham Dwivedi Satendra Singh Gurjar Md Iftikar Hussain Probodh Borah Mangala Lahkar 《Cellular and molecular neurobiology》2017,37(1):65-81
Chronic stress exposure can produce deleterious effects on the hippocampus (HC) which eventually leads to cognitive impairment and depression. Endoplasmic reticulum (ER) stress has been reported as one of the major culprits in the development of stress-induced cognitive impairment and depression. We investigated the neuroprotective efficacy of sodium phenylbutyrate (SPB), an ER stress inhibitor, and edaravone, a free radical scavenger, against chronic restraint stress (CRS)-induced cognitive deficits and anxiety- and depressive-like behavior in mice. Adult male Swiss albino mice were restrained for 6 h/day for 28 days and injected (i.p.) with SPB (40 and 120 mg/kg) or edaravone (3 and 10 mg/kg) for the last seven days. After stress cessation, the anxiety- and depressive-like behavior along with spatial learning and memory were examined. Furthermore, oxido-nitrosative stress, proinflammatory cytokines, and gene expression level of ER stress-related genes were assessed in HC and prefrontal cortex (PFC). CRS-exposed mice showed anxiety- and depressive-like behavior, which was significantly improved by SPB and edaravone treatment. In addition, SPB and edaravone treatment significantly alleviated CRS-induced spatial learning and memory impairment. Furthermore, CRS-evoked oxido-nitrosative stress, neuroinflammation, and depletion of Brain-derived neurotrophic factor were significantly ameliorated by SPB and edaravone treatment. We found significant up-regulation of ER stress-related genes in both HC and PFC regions, which were suppressed by SPB and edaravone treatment in CRS mice. Our study provides evidence that SPB and edaravone exerted neuroprotective effects on CRS-induced cognitive deficits and anxiety- and depressive-like behavior, which is possibly coupled with inhibition of oxido-nitrosative stress, neuroinflammation, and ER stress cascade. 相似文献
10.
Stromal cells with a myofibroblast phenotype present in the normal human esophagus are increased in individuals with gastro-esophageal reflux disease (GERD). We have previously demonstrated that myofibroblasts stimulated with acid and TLR4 agonists increase IL-6 and IL-8 secretion using primary cultures of myofibroblasts established from normal human esophagus. While primary cultures have the advantage of reflecting the in vivo environment, a short life span and unavoidable heterogeneity limits the usefulness of this model in larger scale in vitro cellular signaling studies. The major aim of this paper therefore was to generate a human esophageal myofibroblast line with an extended lifespan. In the work presented here we have generated and characterized an immortalized human esophageal myofibroblast line by transfection with a commercially available GFP-hTERT lentivirus. Immortalized human esophageal myofibroblasts demonstrate phenotypic, genotypic and functional similarity to primary cultures of esophageal myofibroblasts we have previously described. We found that immortalized esophageal myofibroblasts retain myofibroblast spindle-shaped morphology at low and high confluence beyond passage 80, and express α-SMA, vimentin, and CD90 myofibroblast markers. Immortalized human esophageal myofibroblasts also express the putative acid receptor TRPV1 and TLR4 and retain the functional capacity to respond to stimuli encountered in GERD with secretion of IL-6. Finally, immortalized human esophageal myofibroblasts also support the stratified growth of squamous esophageal epithelial cells in 3D organotypic cultures. This newly characterized immortalized human esophageal myofibroblast cell line can be used in future cellular signaling and co-culture studies. 相似文献