首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   367篇
  免费   40篇
  国内免费   1篇
  408篇
  2022年   2篇
  2021年   10篇
  2020年   6篇
  2019年   2篇
  2018年   4篇
  2017年   8篇
  2016年   9篇
  2015年   17篇
  2014年   17篇
  2013年   18篇
  2012年   29篇
  2011年   14篇
  2010年   21篇
  2009年   17篇
  2008年   14篇
  2007年   19篇
  2006年   17篇
  2005年   10篇
  2004年   13篇
  2003年   12篇
  2002年   9篇
  2001年   6篇
  2000年   12篇
  1999年   3篇
  1998年   9篇
  1997年   3篇
  1996年   5篇
  1995年   6篇
  1994年   3篇
  1993年   4篇
  1992年   3篇
  1991年   4篇
  1990年   11篇
  1989年   3篇
  1988年   4篇
  1987年   5篇
  1986年   4篇
  1985年   2篇
  1984年   3篇
  1983年   6篇
  1982年   3篇
  1981年   5篇
  1980年   2篇
  1979年   4篇
  1977年   4篇
  1976年   2篇
  1973年   2篇
  1971年   3篇
  1969年   2篇
  1946年   2篇
排序方式: 共有408条查询结果,搜索用时 10 毫秒
1.
Changes in composition of both total aerobes and anaerobes of rat intestinal microflora do not appear to affect the metabolism of taurolithocholic acid.  相似文献   
2.
Sickle-cell anemia results from an A leads to T transversion in the second nucleotide of codon 6 of the beta-globin gene. We now report an uncommon beta-thalassemia gene that contains a deletion of this nucleotide. Thus, one mutation (GAG leads to GTG) produces sickle-cell anemia, while the other (GAG leads to GG) eliminates beta-globin production. These data establish that different alterations affecting one specific nucleotide can produce either an abnormal hemoglobin or beta-thalassemia. Moreover, the nucleotide sequence comprising codons 6-8 of the beta-globin gene appears to be particularly susceptible to mutations affecting nucleotide number.  相似文献   
3.
Ischemia and reperfusion in skeletal muscle is associated with increases in total vascular resistance (Rt) and the microvascular permeability to plasma proteins. To determine whether exercise training can attenuate ischemia and reperfusion-induced microvascular injury in skeletal muscle, intact (with skin) and skinned, maximally vasodilated (papaverine), isolated hindquarters of control (C) and exercise-trained (ET) rats were subjected to ischemia (intact 120 min; skinned 60 min) followed by 60 min of reperfusion. ET rats ran on a motorized treadmill at 32 m/min (8% grade), 2 h/day for 12 wk, whereas the C rats were cage confined. Before ischemia, ET hindquarters had higher isogravimetric flow, lower Rt, and similar solvent drag reflection coefficients (sigma f) compared with C. During reperfusion in intact hindquarters, flow was higher (P less than 0.05) and Rt tended to be lower (15 +/- 2 vs. 25 +/- 5 mmHg.ml-1.min.100 g; P less than 0.1) in ET compared with C; however, in skinned hindquarters flow and Rt (14 +/- 2 vs. 13 +/- 2 mmHg.ml-1.min.100 g) were not different between C and ET. During reperfusion, sigma f was reduced (P less than 0.05) in both intact (C 0.68 +/- 0.03; ET 0.68 +/- 0.02) and skinned (C 0.66 +/- 0.03; ET 0.68 +/- 0.03) hindquarters, indicative of an increased microvascular permeability to plasma proteins. These results indicate that exercise training did not attenuate the microvascular injury (increased Rt and decreased sigma f) associated with ischemia and reperfusion in rat skeletal muscle.  相似文献   
4.
Phosphorylation is a primary modulator of mammalian G-protein coupled receptor (GPCR) activity. The GPCR melanopsin is the photopigment of intrinsically photosensitive retinal ganglion cells (ipRGCs) in the mammalian retina. Recent evidence from in vitro experiments suggests that the G-protein coupled receptor kinase 2 (GRK2) phosphorylates melanopsin and reduces its activity following light exposure. Using an ipRGC-specific GRK2 loss-of-function mouse, we show that GRK2 loss alters melanopsin response dynamics and termination time in postnatal day 8 (P8) ipRGCs but not in older animals. However, the alterations are small in comparison to the changes reported for other opsins with loss of their cognate GRK. These results suggest GRK2 contributes to melanopsin deactivation, but that other mechanisms account for most of modulation of melanopsin activity in ipRGCs.  相似文献   
5.
6.
7.
The HIV viral entry co‐receptors CCR5 and CXCR4 function physiologically as typical chemokine receptors. Activation leads to cytosolic signal transduction that results in a variety of cellular responses such as cytoskeletal rearrangement and chemotaxis (CTX). Our aim was to investigate the signalling pathways involved in CC and CXC receptor‐mediated cell migration. Inhibition of dynamin I and II GTPase with dynasore completely inhibited CCL3‐stimulated CTX in THP‐1 cells, whereas the dynasore analogue Dyngo‐4a, which is a more potent inhibitor, showed reduced ability to inhibit CC chemokine‐induced CTX. In contrast, dynasore was not able to block cell migration via CXCR4. The same activation/inhibition pattern was verified in activated T lymphocytes for different CC and CXC chemokines. Cell migration induced by CC and CXC receptors does not rely on active internalization processes driven by dynamin because the blockade of internalization does not affect migration, but it might rely on dynamin interaction with the cytoskeleton. We identify here a functional difference in how CC and CXC receptor migration is controlled, suggesting that specific signalling networks are being employed for different receptor classes and potentially specific therapeutic targets to prevent receptor migration can be identified. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
8.
Chemistry of hazardous air pollutants has been studied for many years, yet little is known about how these chemicals, once reacted within urban atmospheres, affect healthy and susceptible individuals. Once released into the atmosphere, 1,3-butadiene (BD) reacts with hydroxyl radicals and ozone (created by photochemical processes), to produce many identified and unidentified products. Once this transformation has occurred, the toxic potential of atmospheric pollutants such as BD in the ambient environment is currently unclear. During this study, environmental irradiation chambers (also called smog chambers), utilizing natural sunlight, were used to create photochemical transformations of BD. The smog chamber/in vitro exposure system was designed to investigate the toxicity of chemicals before and after photochemical reactions and to investigate interactions with the urban atmosphere using representative in vitro samples. In this study, we determined the relative toxicity and inflammatory gene expression induced by coupling smog chamber atmospheres with an in vitro system to expose human respiratory epithelial cells to BD, BDs photochemical degradation products, or the equivalent ozone generated within the photochemical mixture. Exposure to the photochemically generated products of BD (primarily acrolein, acetaldehyde, formaldehyde, furan and ozone) induced significant increases in cytotoxicity, IL-8, and IL-6 gene expression compared to a synthetic mixture of primary products that was created by injecting the correct concentrations of the detected products from the irradiation experiments. Interestingly, exposure to the equivalent levels of ozone generated during the photochemical transformation of BD did not induce the same level of inflammatory cytokine release for either exposure protocol, suggesting that the effects from ozone alone do not account for the entire response in the irradiation experiments. These results indicate that BDs full photochemical product generation and interactions, rather than ozone alone, must be carefully evaluated when investigating the possible adverse health effects to BD exposures. The research presented here takes into account that photochemical transformations of hazardous air pollutants (HAPs) does generate a dynamic exposure system and therefore provides a more realistic approach to estimate the toxicity of ambient air pollutants once they are released into the atmosphere.  相似文献   
9.
Fish-like calcitonins (CTs), such as salmon CT (sCT), are widely used clinically in the treatment of bone-related disorders; however, the molecular basis for CT binding to its receptor, a class II G protein-coupled receptor, is not well defined. In this study we have used photoaffinity labeling to identify proximity sites between CT and its receptor. Two analogues of the antagonist sCT(8-32) containing a single photolabile p-benzoyl-l-phenylalanine (Bpa) residue in position 8 or 19 were used. Both analogues retained high affinity for the CT receptor and potently inhibited agonist-induced cAMP production. The [Bpa(19)]sCT(8-32) analogue cross-linked to the receptor at or near the equivalent cross-linking site of the full-length peptide, within the fragment Cys(134)-Lys(141) (within the amino terminus of the receptor, adjacent to transmembrane 1) (Pham, V., Wade, J. D., Purdue, B. W., and Sexton, P. M. (2004) J. Biol. Chem. 279, 6720-6729). In contrast, proteolytic mapping and mutational analysis identified Met(49) as the cross-linking site for [Bpa(8)]sCT(8-32). This site differed from the previously identified cross-linking site of the agonist [Bpa(8)]human CT (Dong, M., Pinon, D. I., Cox, R. F., and Miller, L. J. (2004) J. Biol. Chem. 279, 31177-31182) and may provide evidence for conformational differences between interaction with active and inactive state receptors. Molecular modeling suggests that the difference in cross-linking between the two Bpa(8) analogues can be accounted for by a relatively small change in peptide orientation. The model was also consistent with cooperative interaction between the receptor amino terminus and the receptor core.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号