首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   343篇
  免费   24篇
  367篇
  2024年   1篇
  2023年   2篇
  2022年   12篇
  2021年   28篇
  2020年   11篇
  2019年   19篇
  2018年   21篇
  2017年   14篇
  2016年   19篇
  2015年   17篇
  2014年   29篇
  2013年   26篇
  2012年   25篇
  2011年   42篇
  2010年   22篇
  2009年   10篇
  2008年   20篇
  2007年   16篇
  2006年   6篇
  2005年   7篇
  2004年   1篇
  2003年   8篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1991年   1篇
  1990年   1篇
  1975年   2篇
排序方式: 共有367条查询结果,搜索用时 15 毫秒
1.
Capsules frequently play a key role in bacterial interactions with their environment. Escherichia coli capsules were categorized as groups 1 through 4, each produced by a distinct mechanism. Etk and Etp are members of protein families required for the production of group 1 and group 4 capsules. These members function as a protein tyrosine kinase and protein tyrosine phosphatase, respectively. We show that Etp dephosphorylates Etk in vivo, and mutations rendering Etk or Etp catalytically inactive result in loss of group 4 capsule production, supporting the notion that cyclic phosphorylation and dephosphorylation of Etk is required for capsule formation. Notably, Etp also becomes tyrosine phosphorylated in vivo and catalyzes rapid auto-dephosphorylation. Further analysis identified Tyr121 as the phosphorylated residue of Etp. Etp containing Phe, Glu or Ala in place of Tyr121 retained phosphatase activity and catalyzed dephosphorylation of Etp and Etk. Although EtpY121E and EtpY121A still supported capsule formation, EtpY121F failed to do so. These results suggest that cycles of phosphorylation and dephosphorylation of Etp, as well as Etk, are involved in the formation of group 4 capsule, providing an additional regulatory layer to the complex control of capsule production.  相似文献   
2.
3.
The latest emergence of influenza A (H1N1) virus outbreak demonstrated how swiftly a new strain of flu can evolve and spread around the globe. The A/H1N1 flu has been spreading at unprecedented speed, and further spread within the countries being affected and to other adjacent or far way countries is considered inevitable due to the rapid emigration of infected individuals across the world. In this bioinformation, we discuss the mechanism of evolution of a new HxNy strain and the essential criteria for potentially breaking the outbreak of these extremely harmful and rapidly evolving viral strains in the near future by taking the recent H1N1 pandemic as a classical paradigm.  相似文献   
4.
5.
Current advances in enzyme bioscavenger prophylactic therapy against chemical warfare nerve agent (CWNA) exposure are moving towards the identification of catalytic bioscavengers that can degrade large doses of organophosphate (OP) nerve agents without self destruction. This is a preferred method compared to therapy with the purified stoichiometric bioscavenger, butyrylcholinesterase, which binds OPs 1:1 and would thus require larger doses for treatment. Paraoxonase-1 (PON-1) is one such catalytic bioscavenger that has been shown to hydrolyze OP insecticides and contribute to detoxification in animals and humans. Here we investigated the effects of a common red wine ingredient, Resveratrol (RSV), to induce the expression of PON-1 in the human hepatic cell line HC04 and evaluated the protection against CWNA simulants. Dose-response curves showed that a concentration of 20 microM RSV was optimal in inducing PON-1 expression in HC04 cells. RSV at 20 microM increased the extracellular PON-1 activity approximately 150% without significantly affecting the cells. Higher doses of RSV were cytotoxic to the cells. Resveratrol also induced PON-1 in the human lung cell line A549. RSV pre-treatment significantly (P = 0.05) protected the hepatic cells against exposure to 2x LD(50) of soman and sarin simulants. However, lung cells were protected against soman simulant exposure but not against sarin simulant exposure following RSV treatment. In conclusion, these studies indicate that dietary inducers, such as RSV, can up-regulate PON-1, a catalytic bioscavenger, which can then hydrolyze and protect against CWNA-induced toxicity, providing a prospective new method to protect against CWNA exposure.  相似文献   
6.
7.
Oxidant stress influences many cellular processes, including cell growth, differentiation, and cell death. A well-recognized link between these processes and oxidant stress is via alterations in Ca2+ signaling. However, precisely how oxidants influence Ca2+ signaling remains unclear. Oxidant stress led to a phenotypic shift in Ca2+ mobilization from an oscillatory to a sustained elevated pattern via calcium release–activated calcium (CRAC)–mediated capacitive Ca2+ entry, and stromal interaction molecule 1 (STIM1)– and Orai1-deficient cells are resistant to oxidant stress. Functionally, oxidant-induced Ca2+ entry alters mitochondrial Ca2+ handling and bioenergetics and triggers cell death. STIM1 is S-glutathionylated at cysteine 56 in response to oxidant stress and evokes constitutive Ca2+ entry independent of intracellular Ca2+ stores. These experiments reveal that cysteine 56 is a sensor for oxidant-dependent activation of STIM1 and demonstrate a molecular link between oxidant stress and Ca2+ signaling via the CRAC channel.  相似文献   
8.

Background

The conventional superposition methods use an ordinary least squares (LS) fit for structural comparison of two different conformations of the same protein. The main problem of the LS fit that it is sensitive to outliers, i.e. large displacements of the original structures superimposed.

Results

To overcome this problem, we present a new algorithm to overlap two protein conformations by their atomic coordinates using a robust statistics technique: least median of squares (LMS). In order to effectively approximate the LMS optimization, the forward search technique is utilized. Our algorithm can automatically detect and superimpose the rigid core regions of two conformations with small or large displacements. In contrast, most existing superposition techniques strongly depend on the initial LS estimating for the entire atom sets of proteins. They may fail on structural superposition of two conformations with large displacements. The presented LMS fit can be considered as an alternative and complementary tool for structural superposition.

Conclusion

The proposed algorithm is robust and does not require any prior knowledge of the flexible regions. Furthermore, we show that the LMS fit can be extended to multiple level superposition between two conformations with several rigid domains. Our fit tool has produced successful superpositions when applied to proteins for which two conformations are known. The binary executable program for Windows platform, tested examples, and database are available from https://engineering.purdue.edu/PRECISE/LMSfit.  相似文献   
9.
Some therapeutic peptides self-assemble in solution to form ordered, insoluble, β-sheet-rich amyloid fibrils. This physical instability can result in reduced potency, cause immunogenic side effects, and limit options for formulation. Understanding the mechanisms of fibrillation is key to developing rational mitigation strategies. Here, amide hydrogen-deuterium exchange with mass spectrometric analysis (HDX-MS) coupled with proteolytic digestion was used to identify the early stage interactions leading to fibrillation of human calcitonin (hCT), a peptide hormone important in calcium metabolism. hCT fibrillation kinetics was sigmoidal, with lag, growth, and plateau phases as shown by thioflavin T and turbidity measurements. HDX-MS of fibrillating hCT (pH 7.4; 25°C) suggested early involvement of the N-terminal (1–11) and central (12–19) fragments in interactions during the lag phase, whereas C-terminal fragments (20–32 and 26–32) showed limited involvement during this period. The residue-level information was used to develop phosphorylated hCT analogs that showed modified fibrillation that depended on phosphorylation site. Phosphorylation in the central region resulted in complete inhibition of fibrillation for the phospho-Thr-13 hCT analog, whereas phosphorylation in the N-terminal and C-terminal regions inhibited but did not prevent fibrillation. Reduction of the Cys1-Cys7 disulfide bond resulted in faster fibrillation with involvement of different hCT residues as indicated by pulsed HDX-MS. Together, the results demonstrate that small structural changes have significant effects on hCT fibrillation and that understanding these effects can inform the rational development of fibrillation-resistant hCT analogs.  相似文献   
10.
Epstein-Barr Virus (EBV) is an enveloped double-stranded DNA virus of the gammaherpesvirinae sub-family that predominantly infects humans through epithelial cells and B cells. Three EBV glycoproteins, gH, gL and gp42, form a complex that targets EBV infection of B cells. Human leukocyte antigen (HLA) class II molecules expressed on B cells serve as the receptor for gp42, triggering membrane fusion and virus entry. The mechanistic role of gHgL in herpesvirus entry has been largely unresolved, but it is thought to regulate the activation of the virally-encoded gB protein, which acts as the primary fusogen. Here we study the assembly and function of the reconstituted B cell entry complex comprised of gHgL, gp42 and HLA class II. The structure from negative-stain electron microscopy provides a detailed snapshot of an intermediate state in EBV entry and highlights the potential for the triggering complex to bring the two membrane bilayers into proximity. Furthermore, gHgL interacts with a previously identified, functionally important hydrophobic pocket on gp42, defining the overall architecture of the complex and playing a critical role in membrane fusion activation. We propose a macroscopic model of the initiating events in EBV B cell fusion centered on the formation of the triggering complex in the context of both viral and host membranes. This model suggests how the triggering complex may bridge the two membrane bilayers, orienting critical regions of the N- and C- terminal ends of gHgL to promote the activation of gB and efficient membrane fusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号