首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   11篇
  2022年   2篇
  2019年   1篇
  2018年   1篇
  2016年   5篇
  2015年   1篇
  2014年   3篇
  2013年   11篇
  2012年   6篇
  2011年   5篇
  2010年   3篇
  2009年   2篇
  2008年   7篇
  2007年   4篇
  2006年   5篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   4篇
  1998年   2篇
  1991年   2篇
  1990年   5篇
  1989年   1篇
  1987年   1篇
  1986年   3篇
  1984年   3篇
  1983年   2篇
排序方式: 共有89条查询结果,搜索用时 15 毫秒
1.
Affinity-purified antibodies were used to identify a protein of molecular mass 45 kDa (45 kDa protein) in rat brain cytosol as phosphatidylinositol 4-phosphate (PtdIns4P) kinase. Antibodies were raised in rabbits by immunization with the purified 45 kDa protein. Anti-(45 kDa protein) immunoglobulins were isolated by affinity chromatography of the antiserum on a solid immunosorbent, which was prepared by coupling a soluble rat brain fraction, the DEAE-cellulose pool containing 10-15% 45 kDa protein, to CNBr-activated Sepharose 4B. The purified IgGs were specific for the 45 kDa protein as judged by immunoblot and by immunoprecipitation. The purified anti-(45 kDa protein) IgGs inhibited the enzyme activity of partially purified PtdIns4P kinase, whereas preimmune IgGs were ineffective. Immunoprecipitation of the 45 kDa protein from the partially purified enzyme preparation with the purified IgGs resulted in a concomitant decrease in the amount of 45 kDa protein and in PtdIns4P kinase activity. The amount of 45 kDa protein remaining in the supernatant and the activity of PtdIns4P kinase correlated with a coefficient of r = 0.87. The evidence presented lends further support for the notion that the catalytic activity of PtdIns4P kinase in rat brain cytosol resides in a 45 kDa protein.  相似文献   
2.
A novel method has been developed for rapid and quantitative determination of the rate of energy consumption in platelets. In platelets suspended in a cyanide-containing medium. ATP resynthesis is abruptly blocked by addition of 2-deoxyglucose and D-glucono-1,5-lactone. We demonstrate that the subsequent changes in the levels of cytoplasmic ATP and ADP reflect the velocity of energy consumption in the platelets immediately before addition of the inhibitors. Despite the arrest in ATP resynthesis the platelets remain responsive to stimulation by thrombin (5 units x ml-1) which triggers the secretion of the contents of dense, alpha- and acid hydrolase granules. Unstimulated platelets were found to consume about 3.5 and 0.5 mumol of ATP equivalents x min-1 x (10(11) cells)-1 at 37 degrees C and 15 degrees C, respectively; the thrombin-treated platelets consumed respectively 16 and 2 mumol of ATP equivalents x min-1 x (10(11) cells)-1 at these temperatures. When the velocity of energy consumption was varied by (a) changing the temperature and (b) preincubation with glyco(geno)lytic inhibitors, it was found to be linearly related to the initial rate of secretion from the three types of granules. The precise nature of this relationship differed between the three types of secretion responses and indicated an increasing requirement for metabolic energy for secretion from the three types of granules in the order: dense granule less than alpha-granule less than acid hydrolase granule. The results obtained with changes in temperature were superimposable on those obtained with the glyco(geno)lytic inhibitors for dense granule secretion and alpha-granule secretion, suggesting an apparent coupling between energy consumption and the rate of these secretion responses. The rate of secretion of acid hydrolase was always higher when energy consumption was varied by temperature changes than when glyco(geno)lytic inhibitors were used, probably as a result of metabolic changes prior to induction of secretion. On the basis of these experiments, we calculated an incremental energy consumption during complete secretion of dense, alpha- and acid hydrolase granule contents of 2.5, 4.2 and 6.7 mumol of ATP equivalents x (10(11) platelets)-1, respectively.  相似文献   
3.
The incorporation of [-32P]ATP into proteins of rat brain polyribosomes was studied in vitro. The effects of cyclic nucleotides, calcium, hemin, ACTH, GTP, and spermine were examined. The incorporation of phosphate into proteins increased with time and phosphatase activity was very low; thus, the extent of phosphorylation was predominantly a reflection of protein kinase activity. Phosphorylation of proteins was not sensitive to Ca2+ in the presence or absence of either calmodulin or phosphatidylserine. Phosphorylation was also unaffected by cyclic nucleotides in the absence of exogenous enzymes. However, addition of a cMAP-dependent protein kinase together with cAMP resulted in a stimulation of the incorporation of phosphate into 4 phosphoproteins (pp70, pp58, pp43, and pp32); phosphorylation of pp32 was completely dependent on the addition of the kinase. ACTH (1–24), (11–24), and spermine inhibited the endogenous phosphorylation of one protein band (pp30). The phosphorylation of this 30 kD band was also selectively increased by hemin (5 M). Higher concentrations of hemin exerted an inhibitory effect on the majority of the phosphoproteins. Protein phosphatase activity was not influenced by ACTH or spermine. The specific inhibition of pp30 phosphorylation by ACTH or spermine is most probably explained by an interaction with a cyclic nucleotide- and Ca2+-independent protein kinase.  相似文献   
4.
Abstract: Recently we have shown that 4-aminopyridine (4-AP), a drug known to enhance transmitter release, stimulates the phosphorylation of the protein kinase C substrate B-50 (GAP-43) in rat brain synaptosomes and that this effect is dependent on the presence of extracellular Ca2+. Hence, we were interested in the relationship between changes induced by 4-AP in the intracellular free Ca2+ concentration ([Ca2+]i) and B-50 phosphorylation in synaptosomes. 4-AP (100 μ M ) elevates the [Ca2+]i (as determined with fura-2) to approximately the same extent as depolarization with 30 m M K+ (from an initial resting level of 240 n M to ∼480 n M after treatment). However, the underlying mechanisms appear to be different: In the presence of 4-AP, depolarization with K+ still evoked an increase in [Ca2+]i, which was additive to the elevation caused by 4-AP. Several Ca2+ channel antagonists (CdCl2, LaCl3, and diphenylhydantoin) inhibited the increase in B-50 phosphorylation by 4-AP. It is interesting that the increase in [Ca2+]i and the increase in B-50 phosphorylation by 4-AP were attenuated by tetrodotoxin, a finding pointing to a possible involvement of Na+ channels in this action. These results suggest that 4-AP (indirectly) stimulates both Ca2+ influx and B-50 phosphorylation through voltage-dependent channels by a mechanism dependent on Na+ channel activity.  相似文献   
5.
Colony breeding records were analyzed in order to obtain information on pre- and neonatal survival in chimpanzees. Biweekly urinary chorionic gonadotrophin testing appeared suitable for determining pregnancy age. The probability of pregnancy termination was low (0.008 per 10 days) to a pregnancy age of 180 days. Between the ages of 180-210 days it was 0.080 per 10 days, and it steadily increased to one per 10 days after 240 days of age. There were no livebirths before 190 days of pregnancy age. Thereafter, the probability of a delivery to be a livebirth rapidly increased to about 0.90 after 210 days of pregnancy age. Infant mortality was less than 0.026 during the first two years of life.  相似文献   
6.
Studies addressing the role of large herbivores on nitrogen cycling in grasslands have suggested that the direction of effects depends on soil fertility. Via selection for high quality plant species and input of dung and urine, large herbivores have been shown to speed up nitrogen cycling in fertile grassland soils while slowing down nitrogen cycling in unfertile soils. However, recent studies show that large herbivores can reduce nitrogen mineralization in some temperate fertile soils, but not in others. To explain this, we hypothesize that large herbivores can reduce nitrogen mineralization in loamy or clay soils through soil compaction, but not in sandy soils. Especially under wet conditions, strong compaction in clay soils can lead to periods of soil anoxia, which reduces decomposition of soil organic matter and, hence, N mineralization. In this study, we use a long-term (37-year) field experiment on a salt marsh to investigate the hypothesis that the effect of large herbivores on nitrogen mineralization depends on soil texture. Our results confirm that the presence of large herbivores decreased nitrogen mineralization rate in a clay soil, but not in a sandy soil. By comparing a hand-mown treatment with a herbivore-grazed treatment, we show that these differences can be attributed to herbivore-induced changes in soil physical properties rather than to above-ground biomass removal. On clay soil, we find that large herbivores increase the soil water-filled porosity, induce more negative soil redox potentials, reduce soil macrofauna abundance, and reduce decomposition activity. On sandy soil, we observe no changes in these variables in response to grazing. We conclude that effects of large herbivores on nitrogen mineralization cannot be understood without taking soil texture, soil moisture, and feedbacks through soil macrofauna into account.  相似文献   
7.
Cue‐induced heroin seeking after prolonged withdrawal is associated with neuronal activation and altered gene expression in prefrontal cortex (PFC). However, these previous studies assessed gene expression in all neurons regardless of their activity state during heroin seeking. Using Fos as a marker of neural activity, we describe distinct molecular alterations induced in activated versus non‐activated neurons during cue‐induced heroin seeking after prolonged withdrawal. We trained rats to self‐administer heroin for 10 days (6 h/day) and assessed cue‐induced heroin seeking in extinction tests after 14 or 30 days. We used fluorescent‐activated cell sorting (FACS) to purify Fos‐positive and Fos‐negative neurons from PFC 90 min after extinction testing. Flow cytometry showed that Fos‐immunoreactivity was increased in less than 10% of sparsely distributed PFC neurons. mRNA levels of the immediate early genes fosB, arc, egr1, and egr2, as well as npy and map2k6, were increased in Fos‐positive, but not Fos‐negative, neurons. In support of these findings, double‐label immunohistochemistry indicated substantial coexpression of neuropeptide Y (NPY)‐ and Arc‐immunoreactivity in Fos‐positive neurons. Our data indicate that cue‐induced relapse to heroin seeking after prolonged withdrawal induces unique molecular alterations within activated PFC neurons that are distinct from those observed in the surrounding majority of non‐activated neurons.  相似文献   
8.
Pattern recognition receptors (PRRs) play a key role in plant and animal innate immunity. PRR binding of their cognate ligand triggers a signaling network and activates an immune response. Activation of PRR signaling must be controlled prior to ligand binding to prevent spurious signaling and immune activation. Flagellin perception in Arabidopsis through FLAGELLIN‐SENSITIVE 2 (FLS2) induces the activation of mitogen‐activated protein kinases (MAPKs) and immunity. However, the precise molecular mechanism that connects activated FLS2 to downstream MAPK cascades remains unknown. Here, we report the identification of a differentially phosphorylated MAP kinase kinase kinase that also interacts with FLS2. Using targeted proteomics and functional analysis, we show that MKKK7 negatively regulates flagellin‐triggered signaling and basal immunity and this requires phosphorylation of MKKK7 on specific serine residues. MKKK7 attenuates MPK6 activity and defense gene expression. Moreover, MKKK7 suppresses the reactive oxygen species burst downstream of FLS2, suggesting that MKKK7‐mediated attenuation of FLS2 signaling occurs through direct modulation of the FLS2 complex.  相似文献   
9.
10.
The oxidized primary electron donor in photosystem II, P(680)(+), is reduced in several phases, extending over 4 orders of magnitude in time. Especially the slower phases may reflect the back-pressure exerted by water oxidation and provide information on the reactions involved. The kinetics of secondary electron-transfer reactions in the microseconds time range after charge separation were investigated in oxygen-evolving thylakoids suspended in H2O or D2O. Flash-induced changes of chlorophyll fluorescence yield and electric field-induced recombination luminescence were decomposed into contributions from oxidation states S(0), S(1), S(2), and S(3) of the oxygen-evolving complex and interpreted in terms of stabilization kinetics of the initial charge-separated state S(j)Y(Z)P(680)(+)Q(A)(-)Q(B). In approximately 10% of the centers, only charge recombination took place. Otherwise, no static heterogeneity was involved in the microsecond reduction of P(680)(+) by Y(Z) (stabilization) or Q(A)(-) (recombination). The recombination component in active centers occurs mainly upon charge separation in S(3), and, in the presence of D2O, in S(2) as well and is tentatively attributed to the presence of Y(Z)(ox)S(j-1) in equilibrium with Y(Z)S(j). A 20-30 micros stabilization occurs in all S-states, but to different extents. Possible mechanisms for this component are discussed. D2O was found to decrease: (i) the rate of the reaction Y(Z)(ox)S(1) to Y(Z)S(2), (ii) the equilibrium constant between P680(+)Y(Z)S(2) and P(680)Y(Z)(ox)S(2), (iii) the rate of the slow phase of P(680)(+) reduction for the S(3) --> S(0) transition, and (iv) the rate of electron transfer from Q(A)(-) to Q(B) /Q(B)(-). The increased 'miss probability' in D2O is due to (iii).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号