首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   4篇
  89篇
  2024年   1篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   5篇
  2012年   5篇
  2011年   8篇
  2010年   2篇
  2009年   2篇
  2008年   6篇
  2007年   6篇
  2006年   11篇
  2005年   3篇
  2004年   10篇
  2003年   3篇
  2002年   3篇
  1994年   1篇
  1991年   1篇
  1988年   1篇
  1986年   1篇
  1979年   2篇
  1975年   1篇
  1969年   1篇
  1965年   1篇
  1955年   1篇
排序方式: 共有89条查询结果,搜索用时 15 毫秒
1.
While there has been considerable progress in designing protein–protein interactions, the design of proteins that bind polar surfaces is an unmet challenge. We describe the computational design of a protein that binds the acidic active site of hen egg lysozyme and inhibits the enzyme. The design process starts with two polar amino acids that fit deep into the enzyme active site, identifies a protein scaffold that supports these residues and is complementary in shape to the lysozyme active-site region, and finally optimizes the surrounding contact surface for high-affinity binding. Following affinity maturation, a protein designed using this method bound lysozyme with low nanomolar affinity, and a combination of NMR studies, crystallography, and knockout mutagenesis confirmed the designed binding surface and orientation. Saturation mutagenesis with selection and deep sequencing demonstrated that specific designed interactions extending well beyond the centrally grafted polar residues are critical for high-affinity binding.  相似文献   
2.
Mast cell-mediated responses are likely to be regulated by the cross talk between activatory and inhibitory signals. We have screened human cord blood mast cells for recently characterized inhibitory receptors expressed on NK cells. We found that IRp60, an Ig superfamily member, is expressed on human mast cells. On NK cells, IRp60 cross-linking leads to the inhibition of cytotoxic activity vs target cells in vitro. IRp60 is constitutively expressed on mast cells but is down-regulated in vitro by the eosinophil proteins major basic protein and eosinophil-derived neurotoxin. An immune complex-mediated cross-linking of IRp60 led to inhibition of IgE-induced degranulation and stem cell factor-mediated survival via a mechanism involving tyrosine phosphorylation, phosphatase recruitment, and termination of cellular calcium influx. To evaluate the role of IRp60 in regulation of allergic responses in vivo, a murine model of allergic peritonitis was used in which the murine homolog of IRp60, LMIR1, was neutralized in BALB/c mice by mAbs. This neutralization led to a significantly augmented release of inflammatory mediators and eosinophilic infiltration. These data demonstrate a novel pathway for the regulation of human mast cell function and allergic responses, indicating IRp60 as a candidate target for future treatment of allergic and mast cell-associated diseases.  相似文献   
3.
We show that comprehensive sequence-function maps obtained by deep sequencing can be used to reprogram interaction specificity and to leapfrog over bottlenecks in affinity maturation by combining many individually small contributions not detectable in conventional approaches. We use this approach to optimize two computationally designed inhibitors against H1N1 influenza hemagglutinin and, in both cases, obtain variants with subnanomolar binding affinity. The most potent of these, a 51-residue protein, is broadly cross-reactive against all influenza group 1 hemagglutinins, including human H2, and neutralizes H1N1 viruses with a potency that rivals that of several human monoclonal antibodies, demonstrating that computational design followed by comprehensive energy landscape mapping can generate proteins with potential therapeutic utility.  相似文献   
4.
The validity of the chalcone scaffold for the design of inhibitors of monoamine oxidase has previously been illustrated. In a systematic attempt to investigate the effect of heterocyclic substitution on the monoamine oxidase inhibitory properties of this versatile scaffold, a series of furanochalcones were synthesized. The results demonstrate that these furan substituted phenylpropenones exhibited moderate to good inhibitory activities towards MAO-B, but showed weak or no inhibition of the MAO-A enzyme. The most active compound, 2E-3-(5-chlorofuran-2-yl)-1-(3-chlorophenyl)prop-2-en-1-one, exhibited an IC50 value of 0.174 μM for the inhibition of MAO-B and 28.6 μM for the inhibition of MAO-A. Interestingly, contrary to data previously reported for chalcones, these furan substituted derivatives acted as reversible inhibitors, while kinetic analysis revealed a competitive mode of binding.  相似文献   
5.
Previous studies have shown that (E)-8-(3-chlorostyryl)caffeine (CSC) is a specific reversible inhibitor of human monoamine oxidase B (MAO-B) and does not bind to human MAO-A. Since the small molecule isatin is a natural reversible inhibitor of both MAO-B and MAO-A, (E)-5-styrylisatin and (E)-6-styrylisatin analogues were synthesized in an attempt to identify inhibitors with enhanced potencies and specificities for MAO-B. The (E)-styrylisatin analogues were found to exhibit higher binding affinities than isatin with the MAO preparations tested. The (E)-5-styrylisatin analogues bound more tightly than the (E)-6 analogue although the latter exhibits the highest MAO-B selectivity. Molecular docking studies with MAO-B indicate that the increased binding affinity exhibited by the (E)-styrylisatin analogues, in comparison to isatin, is best explained by the ability of the styrylisatins to bridge both the entrance cavity and the substrate cavity of the enzyme. Experimental support for this model is shown by the weaker binding of the analogues to the Ile199Ala mutant of human MAO-B. The lower selectivity of the (E)-styrylisatin analogues between MAO-A and MAO-B, in contrast to CSC, is best explained by the differing relative geometries of the aromatic rings for these two classes of inhibitors.  相似文献   
6.
    
Multitarget directed ligands (MTDLs) are emerging as promising treatment options for Alzheimer’s disease (AD). Coumarin derivatives serve as a good starting point for designing MTDLs due to their inherent inhibition of monoamine oxidase (MAO) and cholinesterase enzymes, which are complicit in AD’s complex pathophysiology. A preliminary series of 3,7-substituted coumarin derivatives were synthesised and evaluated for enzyme inhibitory activity, cytotoxicity as well as neuroprotective ability. The results indicated that the compounds are weak cholinesterase inhibitors with five compounds demonstrating relatively potent inhibition and selectivity towards MAO-B with IC50 values between 0.014 and 0.498 hx00B5;µM. Significant neuroprotective effects towards MPP+-compromised SH-SY5Y neuroblastoma cells were also observed, with no inherent cytotoxicity at 10 µM for all compounds. The overall results demonstrated that substitution of the phenylethyloxy moiety at the 7-position imparted superior general activity to the derivatives, with the propargylamine substitution at the 3-position, in particular, displaying the best MAO-B selectivity and neuroprotection.  相似文献   
7.
8.
The alpha beta T cell antigen receptor (TCR) that is expressed on most T lymphocytes is a multisubunit transmembrane complex composed of at least six different proteins (alpha, beta, gamma, delta, epsilon and zeta) that are assembled in the endoplasmic reticulum (ER) and then transported to the plasma membrane. Expression of the TCR complex is quantitatively regulated during T cell development, with immature CD4+CD8+ thymocytes expressing only 10% of the number of surface alpha beta TCR complexes that are expressed on mature T cells. However, the molecular basis for low TCR expression in developing alpha beta T cells is unknown. In the present study we report the unexpected finding that assembly of nascent component chains into complete TCR alpha beta complexes is severely impaired in immature CD4+CD8+ thymocytes relative to their mature T cell progeny. In particular, the initial association of TCR alpha with TCR beta proteins, which occurs relatively efficiently in mature T cells, is markedly inefficient in immature CD4+CD8+ thymocytes, even for a matched pair of transgenic TCR alpha and TCR beta proteins. Inefficient formation of TCR alpha beta heterodimers in immature CD4+CD8+ thymocytes was found to result from the unique instability of nascent TCR alpha proteins within the ER of immature CD4+CD8+ thymocytes, with nascent TCR alpha proteins having a median survival time of only 15 min in CD4+CD8+ thymocytes, but > 75 min in mature T cells. Thus, these data demonstrate that stability of TCR alpha proteins within the ER is developmentally regulated and provide a molecular basis for quantitative differences in alpha beta TCR expression on immature and mature T cells. In addition, these results provide the first example of a receptor complex whose expression is quantitatively regulated during development by post-translational limitations on receptor assembly.  相似文献   
9.
  总被引:4,自引:0,他引:4  
Transmembrane (TM) proteins comprise 20-30% of the genome but, because of experimental difficulties, they represent less than 1% of the Protein Data Bank. The dearth of membrane protein structures makes computational prediction a potentially important means of obtaining novel structures. Recent advances in computational methods have been combined with experimental data to constrain the modeling of three-dimensional structures. Furthermore, threading and ab initio modeling approaches that were effective for soluble proteins have been applied to TM domains. Surprisingly, experimental structures, proteomic analyses and bioinformatics have revealed unexpected architectures that counter long-held views on TM protein structure and stability. Future computational and experimental studies aimed at understanding the thermodynamic and evolutionary bases of these architectural details will greatly enhance predictive capabilities.  相似文献   
10.
The neurotoxic properties of the parkinsonian inducing agent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) are dependent on its metabolic activation in a reaction catalyzed by centrally located monoamine oxidase B (MAO-B). This reaction ultimately leads to the permanently charged 1-methyl-4-phenylpyridinium species MPP(+), a 4-electron oxidation product of MPTP and a potent mitochondrial toxin. The corresponding 5-membered analogue, 1-methyl-3-phenyl-3-pyrroline, is also a selective MAO-B substrate. Unlike MPTP, the MAO-B-catalyzed oxidation of 1-methyl-3-phenyl-3-pyrroline is a 2-electron process that leads to the neutral 1-methyl-3-phenylpyrrole. MPP(+) is thought to exert its toxic effects only after accumulating in the mitochondria, a process driven by the transmembrane electrochemical gradient. Since this energy-dependent accumulation of MPP(+) relies upon its permanent charge, 1-methyl-3-phenyl-3-pyrrolines and their pyrrolyl oxidation products should not be neurotoxic. We have tested this hypothesis by examining the neurotoxic potential of 1-methyl-3-phenyl-3-pyrroline and 1-methyl-3-(4-chlorophenyl)-3-pyrroline in the C57BL/6 mouse model. These pyrrolines did not deplete striatal dopamine while analogous treatment with MPTP resulted in 65-73% depletion. Kinetic studies revealed that both 1-methyl-3-phenyl-3-pyrroline and its pyrrolyl oxidation product were present in the brain in relatively high concentrations. Unlike MPP(+), however, 1-methyl-3-phenylpyrrole was cleared from the brain quickly. These results suggest that the brain MAO-B-catalyzed oxidation of xenobiotic amines is not, in itself, sufficient to account for the neurodegenerative properties of a compound like MPTP. The rapid clearance of 1-methyl-3-phenylpyrroles from the brain may contribute to their lack of neurotoxicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号