首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   12篇
  89篇
  2023年   2篇
  2021年   3篇
  2019年   3篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   7篇
  2011年   7篇
  2010年   2篇
  2009年   1篇
  2008年   6篇
  2007年   2篇
  2006年   6篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   7篇
  2001年   2篇
  2000年   9篇
  1999年   3篇
  1998年   2篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1992年   3篇
  1988年   2篇
  1980年   1篇
  1977年   2篇
排序方式: 共有89条查询结果,搜索用时 0 毫秒
1.
Structural requirements for the activation of transducin by rhodopsin have been studied by site-specific mutagenesis of bovine rhodopsin. A variety of single amino acid replacements and amino acid insertions and deletions of varying sizes were carried out in the two cytoplasmic loops CD (amino acids 134-151) and EF (amino acids 231-252). Except for deletion mutant delta 137-150, all the mutants bound 11-cis-retinal and displayed normal spectral characteristics. Deletion mutant delta 236-239 in loop EF caused a 50% reduction of transducin activation, whereas deletion mutant delta 244-249 and the larger deletions in loop EF abolished transducin activation. An 8-amino acid deletion in the cytoplasmic loop CD as well as a replacement of 13 amino acids with an unrelated sequence showed no transducin activation. Several single amino acid substitutions also caused significant reduction in transducin activation. The conserved charged pair Glu-134/Arg-135 in the cytoplasmic loop CD was required for transducin activation; its reversal or neutralization abolished transducin activation. Three amino acid replacements in loop EF (S240A, T243V, and K248L) resulted in significant reduction in transducin activation. We conclude that 1) both the cytoplasmic loops CD and EF are required for transducin activation, and 2) effective functional interaction between rhodopsin and transducin involves relatively large peptide sequences in the cytoplasmic loops.  相似文献   
2.
The work was focused on the investigation of possible dependencies between the development of viral infection in plants and the presence of high heavy metal concentrations in soil. Field experiments have been conducted in order to study the development of systemic tobacco mosaic virus (TMV) infection in Lycopersicon esculentum L. cv. Miliana plants under effect of separate salts of heavy metals Cu, Zn and Pb deposited in soil. As it is shown, simultaneous effect of viral infection and heavy metals in tenfold maximum permissible concentration leads to decrease of total chlorophyll content in experiment plants mainly due to the degradation of chlorophyll a. The reduction of chlorophyll concentration under the combined influence of both stress factors was more serious comparing to the separate effect of every single factor. Plants' treatment with toxic concentrations of lead and zinc leaded to slight delay in the development of systemic TMV infection together with more than twofold increase of virus content in plants that may be an evidence of synergism between these heavy metal's and virus' effects. Contrary, copper although decreased total chlorophyll content but showed protective properties and significantly reduced amount of virus in plants.  相似文献   
3.
4.
The inherent instability of heptahelical G protein-coupled receptors (GPCRs) during purification and reconstitution is a primary impediment to biophysical studies and to obtaining high-resolution crystal structures. New approaches to stabilizing receptors during purification and screening reconstitution procedures are needed. Here we report the development of a novel homogeneous time-resolved fluorescence assay (HTRF) to quantify properly folded CC-chemokine receptor 5 (CCR5). The assay permits high-throughput thermal stability measurements of femtomole quantities of CCR5 in detergent and in engineered nanoscale apolipoprotein-bound bilayer (NABB) particles. We show that recombinantly expressed CCR5 can be incorporated into NABB particles in high yield, resulting in greater thermal stability compared with that of CCR5 in a detergent solution. We also demonstrate that binding of CCR5 to the HIV-1 cellular entry inhibitors maraviroc, AD101, CMPD 167, and vicriviroc dramatically increases receptor stability. The HTRF assay technology reported here is applicable to other membrane proteins and could greatly facilitate structural studies of GPCRs.  相似文献   
5.
Human immunodeficiency virus type 1 (HIV-1) entry is mediated by the consecutive interaction of the envelope glycoprotein gp120 with CD4 and a coreceptor such as CCR5 or CXCR4. The CCR5 coreceptor is used by the most commonly transmitted HIV-1 strains that often persist throughout the course of infection. Compounds targeting CCR5-mediated entry are a novel class of drugs being developed to treat HIV-1 infection. In this study, we have identified the mechanism of action of two inhibitors of CCR5 function, SCH-350581 (AD101) and SCH-351125 (SCH-C). AD101 is more potent than SCH-C at inhibiting HIV-1 replication in primary lymphocytes, as well as viral entry and gp120 binding to cell lines. Both molecules also block the binding of several anti-CCR5 monoclonal antibodies that recognize epitopes in the second extracellular loop of CCR5. Alanine mutagenesis of the transmembrane domain of CCR5 suggests that AD101 and SCH-C bind to overlapping but nonidentical sites within a putative ligand-binding cavity formed by transmembrane helices 1, 2, 3, and 7. We propose that the binding of small molecules to the transmembrane domain of CCR5 may disrupt the conformation of its extracellular domain, thereby inhibiting ligand binding to CCR5.  相似文献   
6.
The ancestors of the archosaurs, a major branch of the diapsid reptiles, originated more than 240 MYA near the dawn of the Triassic Period. We used maximum likelihood phylogenetic ancestral reconstruction methods and explored different models of evolution for inferring the amino acid sequence of a putative ancestral archosaur visual pigment. Three different types of maximum likelihood models were used: nucleotide-based, amino acid-based, and codon-based models. Where possible, within each type of model, likelihood ratio tests were used to determine which model best fit the data. Ancestral reconstructions of the ancestral archosaur node using the best-fitting models of each type were found to be in agreement, except for three amino acid residues at which one reconstruction differed from the other two. To determine if these ancestral pigments would be functionally active, the corresponding genes were chemically synthesized and then expressed in a mammalian cell line in tissue culture. The expressed artificial genes were all found to bind to 11-cis-retinal to yield stable photoactive pigments with lambda(max) values of about 508 nm, which is slightly redshifted relative to that of extant vertebrate pigments. The ancestral archosaur pigments also activated the retinal G protein transducin, as measured in a fluorescence assay. Our results show that ancestral genes from ancient organisms can be reconstructed de novo and tested for function using a combination of phylogenetic and biochemical methods.  相似文献   
7.
Krishna AG  Menon ST  Terry TJ  Sakmar TP 《Biochemistry》2002,41(26):8298-8309
The crystal structure of rhodopsin revealed a cytoplasmic helical segment (H8) extending from transmembrane (TM) helix seven to a pair of vicinal palmitoylated cysteine residues. We studied the structure of model peptides corresponding to H8 under a variety of conditions using steady-state fluorescence, fluorescence anisotropy, and circular dichroism spectroscopy. We find that H8 acts as a membrane-surface recognition domain, which adopts a helical structure only in the presence of membranes or membrane mimetics. The secondary structural properties of H8 further depend on membrane lipid composition with phosphatidylserine inducing helical structure. Fluorescence quenching experiments using brominated acyl chain phospholipids and vesicle leakage assays suggest that H8 lies within the membrane interfacial region where amino acid side chains can interact with phospholipid headgroups. We conclude that H8 in rhodopsin, in addition to its role in binding the G protein transducin, acts as a membrane-dependent conformational switch domain.  相似文献   
8.
Glutamic acid at position 113 in bovine rhodopsin ionizes to form the counterion to the protonated Schiff base (PSB), which links the 11-cis-retinylidene chromophore to opsin. Photoactivation of rhodopsin requires both Schiff base deprotonation and neutralization of Glu-113. To better understand the role of electrostatic interactions in receptor photoactivation, absorbance difference spectra were collected at time delays from 30 ns to 690 ms after photolysis of rhodopsin mutant E113Q solubilized in dodecyl maltoside at different pH values at 20 degrees C. The PSB form (pH 5. 5, lambda(max) = 496 nm) and the unprotonated Schiff base form (pH 8. 2, lambda(max) = 384 nm) of E113Q rhodopsin were excited using 477 nm or 355 nm light, respectively. Early photointermediates of both forms of E113Q were qualitatively similar to those of wild-type rhodopsin. In particular, early photoproducts with spectral shifts to longer wavelengths analogous to wild-type bathorhodopsin were seen. In the case of the basic form of E113Q, the absorption maximum of this intermediate was at 408 nm. These results suggest that steric interaction between the retinylidene chromophore and opsin, rather than charge separation, plays the dominant role in energy storage in bathorhodopsin. After lumirhodopsin, instead of deprotonating to form metarhodopsin I(380) on the submillisecond time scale as is the case for wild type, the acidic form of E113Q produced metarhodopsin I(480), which decayed very slowly (exponential lifetime = 12 ms). These results show that Glu-113 must be present for efficient deprotonation of the Schiff base and rapid visual transduction in vertebrate visual pigments.  相似文献   
9.
The role of the putative fourth cytoplasmic loop of rhodopsin in the binding and catalytic activation of the heterotrimeric G protein, transducin (G(t)), is not well defined. We developed a novel assay to measure the ability of G(t), or G(t)-derived peptides, to inhibit the photoregeneration of rhodopsin from its active metarhodopsin II state. We show that a peptide corresponding to residues 340-350 of the alpha subunit of G(t), or a cysteinyl-thioetherfarnesyl peptide corresponding to residues 50-71 of the gamma subunit of G(t), are able to interact with metarhodopsin II and inhibit its photoconversion to rhodopsin. Alteration of the amino acid sequence of either peptide, or removal of the farnesyl group from the gamma-derived peptide, prevents inhibition. Mutation of the amino-terminal region of the fourth cytoplasmic loop of rhodopsin affects interaction with G(t) (Marin, E. P., Krishna, A. G., Zvyaga T. A., Isele, J., Siebert, F., and Sakmar, T. P. (2000) J. Biol. Chem. 275, 1930-1936). Here, we provide evidence that this segment of rhodopsin interacts with the carboxyl-terminal peptide of the alpha subunit of G(t). We propose that the amino-terminal region of the fourth cytoplasmic loop of rhodopsin is part of the binding site for the carboxyl terminus of the alpha subunit of G(t) and plays a role in the regulation of betagamma subunit binding.  相似文献   
10.
Tyrosine sulfation of the chemokine receptor CXCR4 enhances its interaction with the chemokine SDF-1alpha. Given similar post-translational modification of other receptors, including CCR5, CX3CR1 and CCR2b, tyrosine sulfation may be of universal importance in chemokine signaling. N-terminal domains from seven transmembrane chemokine receptors have been employed for structural studies of chemokine-receptor interactions, but never in the context of proper post-translational modifications known to affect function. A CXCR4 peptide modified at position 21 by expressed tyrosylprotein sulfotransferase-1 and unmodified peptide are both disordered in solution, but bind SDF-1alpha with low micromolar affinities. NMR and fluorescence polarization measurements showed that the CXCR4 peptide stabilizes dimeric SDF-1alpha, and that sulfotyrosine 21 binds a specific site on the chemokine that includes arginine 47. We conclude that the SDF-1alpha dimer preferentially interacts with receptor peptide, and residues beyond the extreme N-terminal region of CXCR4, including sulfotyrosine 21, make specific contacts with the chemokine ligand.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号