全文获取类型
收费全文 | 633篇 |
免费 | 33篇 |
国内免费 | 1篇 |
专业分类
667篇 |
出版年
2024年 | 4篇 |
2023年 | 8篇 |
2022年 | 24篇 |
2021年 | 43篇 |
2020年 | 21篇 |
2019年 | 41篇 |
2018年 | 27篇 |
2017年 | 17篇 |
2016年 | 27篇 |
2015年 | 29篇 |
2014年 | 38篇 |
2013年 | 55篇 |
2012年 | 49篇 |
2011年 | 53篇 |
2010年 | 31篇 |
2009年 | 17篇 |
2008年 | 21篇 |
2007年 | 33篇 |
2006年 | 11篇 |
2005年 | 16篇 |
2004年 | 20篇 |
2003年 | 19篇 |
2002年 | 12篇 |
2001年 | 2篇 |
2000年 | 2篇 |
1999年 | 2篇 |
1995年 | 4篇 |
1994年 | 1篇 |
1993年 | 2篇 |
1992年 | 1篇 |
1991年 | 2篇 |
1990年 | 6篇 |
1989年 | 3篇 |
1988年 | 4篇 |
1986年 | 1篇 |
1985年 | 1篇 |
1983年 | 1篇 |
1982年 | 2篇 |
1981年 | 1篇 |
1980年 | 4篇 |
1979年 | 2篇 |
1978年 | 1篇 |
1977年 | 2篇 |
1976年 | 1篇 |
1974年 | 2篇 |
1973年 | 1篇 |
1970年 | 1篇 |
1945年 | 1篇 |
1944年 | 1篇 |
排序方式: 共有667条查询结果,搜索用时 15 毫秒
1.
Tore Eid Kevin Behar Ronnie Dhaher Argyle V. Bumanglag Tih-Shih W. Lee 《Neurochemical research》2012,37(11):2339-2350
Glutamine synthetase (GS, E.C. 6.3.1.2) is a ubiquitous and highly compartmentalized enzyme that is critically involved in several metabolic pathways in the brain, including the glutamine-glutamate-GABA cycle and detoxification of ammonia. GS is normally localized to the cytoplasm of most astrocytes, with elevated concentrations of the enzyme being present in perivascular endfeet and in processes close to excitatory synapses. Interestingly, an increasing number of studies have indicated that the expression, distribution, or activity of brain GS is altered in several brain disorders, including Alzheimer’s disease, schizophrenia, depression, suicidality, and mesial temporal lobe epilepsy (MTLE). Although the metabolic and functional sequelae of brain GS perturbations are not fully understood, it is likely that a deficiency in brain GS will have a significant biological impact due to the critical metabolic role of the enzyme. Furthermore, it is possible that restoration of GS in astrocytes lacking the enzyme could constitute a novel and highly specific therapy for these disorders. The goals of this review are to summarize key features of mammalian GS under normal conditions, and discuss the consequences of GS deficiency in brain disorders, specifically MTLE. 相似文献
2.
The discovery of potent, selective, and orally bioavailable hNK1 antagonists derived from pyrrolidine 总被引:2,自引:0,他引:2
Lin P Chang L Devita RJ Young JR Eid R Tong X Zheng S Ball RG Tsou NN Chicchi GG Kurtz MM Tsao KL Wheeldon A Carlson EJ Eng W Burns HD Hargreaves RJ Mills SG 《Bioorganic & medicinal chemistry letters》2007,17(18):5191-5198
SAR studies on amides, ureas, and vinylogous amides derived from pyrrolidine led to the discovery of several potent hNK(1) antagonists. One particular vinylogous amide (45b) had excellent potency, selectivity, pharmacokinetic profile, and functional activity in vivo. An in vivo rhesus macaque brain receptor occupancy PET study for compound 45b revealed an estimated Occ(90) approximately 300 ng/ml. 相似文献
3.
Zhou Xianwen Hassan Waseem Bakht Sahar Hussain Kalsoom Ahmed Hammad 《Doklady. Biochemistry and biophysics》2021,500(1):341-346
Doklady Biochemistry and Biophysics - Abutilon indicum Linn (A. indicum) is native to tropical and subtropical zones and traditionally used in ulcer, diabetes, piles, jaundice, gonorrhoea and... 相似文献
4.
Assaad A. Eid Doug-Yoon Lee Linda J. Roman Khaled Khazim Yves Gorin 《Molecular and cellular biology》2013,33(17):3439-3460
Mesangial matrix accumulation is an early feature of glomerular pathology in diabetes. Oxidative stress plays a critical role in hyperglycemia-induced glomerular injury. Here, we demonstrate that, in glomerular mesangial cells (MCs), endothelial nitric oxide synthase (eNOS) is uncoupled upon exposure to high glucose (HG), with enhanced generation of reactive oxygen species (ROS) and decreased production of nitric oxide. Peroxynitrite mediates the effects of HG on eNOS dysfunction. HG upregulates Nox4 protein, and inhibition of Nox4 abrogates the increase in ROS and peroxynitrite generation, as well as the eNOS uncoupling triggered by HG, demonstrating that Nox4 functions upstream from eNOS. Importantly, this pathway contributes to HG-induced MC fibronectin accumulation. Nox4-mediated eNOS dysfunction was confirmed in glomeruli of a rat model of type 1 diabetes. Sestrin 2-dependent AMP-activated protein kinase (AMPK) activation attenuates HG-induced MC fibronectin synthesis through blockade of Nox4-dependent ROS and peroxynitrite generation, with subsequent eNOS uncoupling. We also find that HG negatively regulates sestrin 2 and AMPK, thereby promoting Nox4-mediated eNOS dysfunction and increased fibronectin. These data identify a protective function for sestrin 2/AMPK and potential targets for intervention to prevent fibrotic injury in diabetes. 相似文献
5.
Block K Eid A Griendling KK Lee DY Wittrant Y Gorin Y 《The Journal of biological chemistry》2008,283(35):24061-24076
Activation of glomerular mesangial cells (MCs) by angiotensin II (Ang II) leads to hypertrophy and extracellular matrix accumulation. Here, we demonstrate that, in MCs, Ang II induces an increase in PDK-1 (3-phosphoinositide-dependent protein kinase-1) kinase activity that required its phosphorylation on tyrosine 9 and 373/376. Introduction into the cells of PDK-1, mutated on these tyrosine residues or kinase-inactive, attenuates Ang II-induced hypertrophy and fibronectin accumulation. Ang II-mediated PDK-1 activation and tyrosine phosphorylation (total and on residues 9 and 373/376) are inhibited in cells transfected with small interfering RNA for Src, indicating that Src is upstream of PDK-1. In cells expressing oxidation-resistant Src mutant C487A, Ang II-induced hypertrophy and fibronectin expression are prevented, suggesting that the pathway is redox-sensitive. Ang II also up-regulates Nox4 protein, and siNox4 abrogates the Ang II-induced increase in intracellular reactive oxygen species (ROS) generation. Small interfering RNA for Nox4 also inhibits Ang II-induced activation of Src and PDK-1 tyrosine phosphorylation (total and on residues 9 and 373/376), demonstrating that Nox4 functions upstream of Src and PDK-1. Importantly, inhibition of Nox4, Src, or PDK-1 prevents the stimulatory effect of Ang II on fibronectin accumulation and cell hypertrophy. This work provides the first evidence that Nox4-derived ROS are responsible for Ang II-induced PDK-1 tyrosine phosphorylation and activation through stimulation of Src. Importantly, this pathway contributes to Ang II-induced MC hypertrophy and fibronectin accumulation. These data shed light on molecular processes underlying the oxidative signaling cascade engaged by Ang II and identify potential targets for intervention to prevent renal hypertrophy and fibrosis. 相似文献
6.
Saurabh Sahar Loredana Zocchi Chisato Kinoshita Emiliana Borrelli Paolo Sassone-Corsi 《PloS one》2010,5(1)
Background
Circadian rhythms govern a large array of physiological and metabolic functions. To achieve plasticity in circadian regulation, proteins constituting the molecular clock machinery undergo various post-translational modifications (PTMs), which influence their activity and intracellular localization. The core clock protein BMAL1 undergoes several PTMs. Here we report that the Akt-GSK3β signaling pathway regulates BMAL1 protein stability and activity.Principal Findings
GSK3β phosphorylates BMAL1 specifically on Ser 17 and Thr 21 and primes it for ubiquitylation. In the absence of GSK3β-mediated phosphorylation, BMAL1 becomes stabilized and BMAL1 dependent circadian gene expression is dampened. Dopamine D2 receptor mediated signaling, known to control the Akt-GSK3β pathway, influences BMAL1 stability and in vivo circadian gene expression in striatal neurons.Conclusions
These findings uncover a previously unknown mechanism of circadian clock control. The GSK3β kinase phosphorylates BMAL1, an event that controls the stability of the protein and the amplitude of circadian oscillation. BMAL1 phosphorylation appears to be an important regulatory step in maintaining the robustness of the circadian clock. 相似文献7.
8.
Sahar EL Hadad Saleha Alakilli Samar Rabah Jamal Sabir 《Saudi Journal of Biological Sciences》2018,25(4):838-847
Little is known about the prevalence of HBV genotypes/sub-genotypes in Jeddah province, although the hepatitis B virus (HBV) was identified as the most predominant type of hepatitis in Saudi Arabia. To characterize HBV genotypes/sub-genotypes, serum samples from 15 patients with chronic HBV were collected and subjected to HBsAg gene amplification and sequence analysis. Phylogenetic analysis of the HBsAg gene sequences revealed that 11 (48%) isolates belonged to HBV/D while 4 (18%) were associated with HBV/C. Notably, a HBV/D sub-genotype phylogenetic tree identified that eight current isolates (72%) belonged to HBV/D1, whereas three isolates (28%) appeared to be more closely related to HBV/D5, although they formed a novel cluster supported by a branch with 99% bootstrap value. Isolates belonging to D1 were grouped in one branch and seemed to be more closely related to various strains isolated from different countries. For further determination of whether the three current isolates belonged to HBV/D5 or represented a novel sub-genotype, HBV/DA, whole HBV genome sequences would be required. In the present study, we verified that HBV/D1 is the most prevalent HBV sub-genotype in Jeddah, and identified novel variant mutations suggesting that an additional sub-genotype designated HBV/DA should be proposed. Overall, the results of the present HBsAg sequence analyses provide us with insights regarding the nucleotide differences between the present HBsAg/D isolates identified in the populace of Jeddah, Saudi Arabia and those previously isolated worldwide. Additional studies with large numbers of subjects in other areas might lead to the discovery of the specific HBV strain genotypes or even additional new sub-genotypes that are circulating in Saudi Arabia. 相似文献
9.
Campan M Moffitt M Houshdaran S Shen H Widschwendter M Daxenbichler G Long T Marth C Laird-Offringa IA Press MF Dubeau L Siegmund KD Wu AH Groshen S Chandavarkar U Roman LD Berchuck A Pearce CL Laird PW 《PloS one》2011,6(12):e28141
Background
The identification of sensitive biomarkers for the detection of ovarian cancer is of high clinical relevance for early detection and/or monitoring of disease recurrence. We developed a systematic multi-step biomarker discovery and verification strategy to identify candidate DNA methylation markers for the blood-based detection of ovarian cancer.Methodology/Principal Findings
We used the Illumina Infinium platform to analyze the DNA methylation status of 27,578 CpG sites in 41 ovarian tumors. We employed a marker selection strategy that emphasized sensitivity by requiring consistency of methylation across tumors, while achieving specificity by excluding markers with methylation in control leukocyte or serum DNA. Our verification strategy involved testing the ability of identified markers to monitor disease burden in serially collected serum samples from ovarian cancer patients who had undergone surgical tumor resection compared to CA-125 levels.We identified one marker, IFFO1 promoter methylation (IFFO1-M), that is frequently methylated in ovarian tumors and that is rarely detected in the blood of normal controls. When tested in 127 serially collected sera from ovarian cancer patients, IFFO1-M showed post-resection kinetics significantly correlated with serum CA-125 measurements in six out of 16 patients.Conclusions/Significance
We implemented an effective marker screening and verification strategy, leading to the identification of IFFO1-M as a blood-based candidate marker for sensitive detection of ovarian cancer. Serum levels of IFFO1-M displayed post-resection kinetics consistent with a reflection of disease burden. We anticipate that IFFO1-M and other candidate markers emerging from this marker development pipeline may provide disease detection capabilities that complement existing biomarkers. 相似文献10.
I Ottestad S Hassani GI Borge A Kohler G Vogt T Hyötyläinen M Orešič KW Brønner KB Holven SM Ulven MC Myhrstad 《PloS one》2012,7(8):e42550