首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   303篇
  免费   23篇
  326篇
  2023年   6篇
  2022年   4篇
  2021年   11篇
  2020年   7篇
  2019年   5篇
  2018年   5篇
  2017年   1篇
  2016年   9篇
  2015年   8篇
  2014年   10篇
  2013年   19篇
  2012年   28篇
  2011年   18篇
  2010年   13篇
  2009年   7篇
  2008年   11篇
  2007年   23篇
  2006年   16篇
  2005年   15篇
  2004年   9篇
  2003年   16篇
  2002年   16篇
  2001年   7篇
  2000年   15篇
  1999年   6篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1993年   1篇
  1992年   4篇
  1991年   3篇
  1990年   5篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1973年   2篇
  1970年   1篇
  1965年   1篇
排序方式: 共有326条查询结果,搜索用时 15 毫秒
1.
In mammals, testosterone secretion is known to respond rapidly to changes in males' immediate social environment. However, such changes do not take testosterone levels below the baseline required to maintain spermatogenesis, and so do not usually affect males' fertility. In this paper, we show that individual males' patterns of testicular activity reflect their social roles in a group-living carnivore, the European badger ( Melcs metes ), leading to individual and population differences in the seasonal patterns of both testosterone secretion and, apparently, spermatogenesis. In one badger population, some males left their natal groups to become breeding males in neighbouring territories. These males had higher plasma testosterone levels, and appeared to sustain spermatogenesis for a longer period, than males which remained in their natal territories. In contrast, in a second (higher density) population, males rarely transferred away from their natal territories, and appeared not to defend access to groups of females. Instead, males made forays to mate with females in neighbouring territories. In this population males had a shorter period of testicular activity, and there were no differences in testicular activity between immigrant and natal males.  相似文献   
2.
3.
4.
5.
Dothistromin is a polyketide toxin, produced by a fungal forest pathogen, with structural similarity to the aflatoxin precursor versicolorin B. Biochemical and genetic studies suggested that there are common steps in the biosynthetic pathways for these metabolites and showed similarities between some of the genes. A polyketide synthase gene (pksA) was isolated from dothistromin-producing Dothistroma septosporum by hybridization with an aflatoxin ortholog from Aspergillus parasiticus. Inactivation of this gene in D. septosporum resulted in mutants that could not produce dothistromin but that could convert exogenous aflatoxin precursors, including norsolorinic acid, into dothistromin. The mutants also had reduced asexual sporulation compared to the wild type. So far four other genes are known to be clustered immediately alongside pksA. Three of these (cypA, moxA, avfA) are predicted to be orthologs of aflatoxin biosynthetic genes. The other gene (epoA), located between avfA and moxA, is predicted to encode an epoxide hydrolase, for which there is no homolog in either the aflatoxin or sterigmatocystin gene clusters. The pksA gene is located on a small chromosome of ~1.3 Mb in size, along with the dothistromin ketoreductase (dotA) gene.  相似文献   
6.
Baculovirus infection in Lepidoptera can alter both larval mobility and feeding rates, which can in turn affect pathogen transmission and dispersal in the field. We compared the damage to cabbage plants in the field caused by healthy and nucleopolyhedrovirus-infected Mamestra brassicae L. (Lepidoptera: Noctuidae) larvae released as second and fourth instars. There was no significant difference in plant consumption by healthy and infected larvae for the first 4 days after release. From day 5 onwards, infected larvae caused significantly less defoliation. This pattern was similar for larvae at both larval instars. Defoliation was greater for fourth instars throughout the experiment.  相似文献   
7.
Laboratory selection experiments have evidenced storage of energy metabolites in adult flies of desiccation and starvation resistant strains of D. melanogaster but resource acquisition during larval stages has received lesser attention. For wild populations of D. melanogaster, it is not clear whether larvae acquire similar or different energy metabolites for desiccation and starvation resistance. We tested the hypothesis whether larval acquisition of energy metabolites is consistent with divergence of desiccation and starvation resistance in darker and lighter isofemale lines of D. melanogaster. Our results are interesting in several respects. First, we found contrasting patterns of larval resource acquisition, i.e., accumulation of higher carbohydrates during 3rd instar larval stage of darker flies versus higher levels of triglycerides in 1st and 2nd larval instars of lighter flies. Second, 3rd instar larvae of darker flies showed ~40?h longer duration of development at 21°C; and greater accumulation of carbohydrates (trehalose and glycogen) in fed larvae as compared with larvae non-fed after 150?h of egg laying. Third, darker isofemale lines have shown significant increase in total water content (18%); hemolymph (86%) and dehydration tolerance (11%) as compared to lighter isofemale lines. Loss of hemolymph water under desiccation stress until death was significantly higher in darker as compared to lighter isofemale lines but tissue water loss was similar. Fourth, for larvae of darker flies, about 65% energy content is contributed by carbohydrates for conferring greater desiccation resistance while the larvae of lighter flies acquire 2/3 energy from lipids for sustaining starvation resistance; and such energy differences persist in the newly eclosed flies. Thus, larval stages of wild-caught darker and lighter flies have evolved independent physiological processes for the accumulation of energy metabolites to cope with desiccation or starvation stress.  相似文献   
8.
Blood-feeding invertebrates are emerging model taxa in biodiversity assessments, both as indicators of mammal abundance and also as sources of mammal DNA for identification. Among these, terrestrial leeches arguably offer the greatest promise; they are abundant and widespread in the humid tropics, and their blood meals can be easily assayed to establish diet. Unfortunately, terrestrial leeches are understudied, with little known about their ecology and behavior. Such information is needed to evaluate their utility as ecological indicators and to account for potential sampling biases that might arise from habitat preferences. By combining occupancy modeling and thermal tolerance assays, we determined the factors affecting species occurrence in the related terrestrial brown (Haemadipsa sumatrana) and tiger leech (Haemadipsa picta), both of which are widespread in tropical forests in Southeast Asia. We sampled both species across a degraded forest landscape in Sabah, Borneo, in wet and dry seasons, associating occurrence with habitat-level metrics. We found that, for both species, detection probability increased with canopy height regardless of season. Additionally, increased vegetation heterogeneity had a strong negative influence on brown leech occurrence in the dry season, implying an interaction between vegetation structure and climate. However, we found no difference in physiological thermal tolerance (CTMAX) between the two species. Finally, using a reduced dataset, we found a small improvement in brown leech model fit when including mammal abundance. Our results suggest that the presence of terrestrial leeches may act as useful ecological indicators of habitat quality and potentially mammalian abundance. Abstract in Indonesia is available with online material.  相似文献   
9.
Dynamic Global Vegetation Models (DGVMs) provide a state-of-the-art process-based approach to study the complex interplay between vegetation and its physical environment. For example, they help to predict how terrestrial plants interact with climate, soils, disturbance and competition for resources. We argue that there is untapped potential for the use of DGVMs in ecological and ecophysiological research. One fundamental barrier to realize this potential is that many researchers with relevant expertize (ecology, plant physiology, soil science, etc.) lack access to the technical resources or awareness of the research potential of DGVMs. Here we present the Land Sites Platform (LSP): new software that facilitates single-site simulations with the Functionally Assembled Terrestrial Ecosystem Simulator, an advanced DGVM coupled with the Community Land Model. The LSP includes a Graphical User Interface and an Application Programming Interface, which improve the user experience and lower the technical thresholds for installing these model architectures and setting up model experiments. The software is distributed via version-controlled containers; researchers and students can run simulations directly on their personal computers or servers, with relatively low hardware requirements, and on different operating systems. Version 1.0 of the LSP supports site-level simulations. We provide input data for 20 established geo-ecological observation sites in Norway and workflows to add generic sites from public global datasets. The LSP makes standard model experiments with default data easily achievable (e.g., for educational or introductory purposes) while retaining flexibility for more advanced scientific uses. We further provide tools to visualize the model input and output, including simple examples to relate predictions to local observations. The LSP improves access to land surface and DGVM modelling as a building block of community cyberinfrastructure that may inspire new avenues for mechanistic ecosystem research across disciplines.  相似文献   
10.
Analyses of the dynamics of diseases in wild populations typically assume all individuals to be identical. However, profound effects on the long-term impact on the host population can be expected if the disease has age and sex dependent dynamics. The Phocine Distemper Virus (PDV) caused two mass mortalities in European harbour seals in 1988 and in 2002. We show the mortality patterns were highly age specific on both occasions, where young of the year and adult (>4 yrs) animals suffered extremely high mortality, and sub-adult seals (1-3 yrs) of both sexes experienced low mortality. Consequently, genetic differences cannot have played a main role explaining why some seals survived and some did not in the study region, since parents had higher mortality levels than their progeny. Furthermore, there was a conspicuous absence of animals older than 14 years among the victims in 2002, which strongly indicates that the survivors from the previous disease outbreak in 1988 had acquired and maintained immunity to PDV. These specific mortality patterns imply that contact rates and susceptibility to the disease are strongly age and sex dependent variables, underlining the need for structured epidemic models for wildlife diseases. Detailed data can thus provide crucial information about a number of vital parameters such as functional herd immunity. One of many future challenges in understanding the epidemiology of the PDV and other wildlife diseases is to reveal how immune system responses differ among animals in different stages during their life cycle. The influence of such underlying mechanisms may also explain the limited evidence for abrupt disease thresholds in wild populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号