首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   317篇
  免费   18篇
  335篇
  2019年   1篇
  2018年   4篇
  2017年   2篇
  2016年   6篇
  2015年   14篇
  2014年   15篇
  2013年   25篇
  2012年   14篇
  2011年   18篇
  2010年   26篇
  2009年   25篇
  2008年   13篇
  2007年   12篇
  2006年   12篇
  2005年   13篇
  2004年   11篇
  2003年   4篇
  2002年   4篇
  2001年   6篇
  2000年   4篇
  1999年   3篇
  1998年   9篇
  1997年   10篇
  1996年   4篇
  1995年   6篇
  1994年   3篇
  1993年   7篇
  1991年   3篇
  1989年   2篇
  1988年   7篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1984年   5篇
  1983年   3篇
  1982年   16篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   5篇
  1976年   3篇
  1975年   3篇
  1972年   1篇
  1971年   1篇
排序方式: 共有335条查询结果,搜索用时 15 毫秒
1.
Abstract A mutant screening procedure is described which allows the identification of mutants carrying lesions in lipoprotein, membrane-derived oligosac-charides (MDO), and other compounds of the E. coli cell envelope containing glycerol derived from phospholipid metabolism. Two mutants lacking glycerol in MDO and one mutant devoid of lipoprotein demonstrate the usefulness of the procedure.  相似文献   
2.
3.
4.
5.
6.
In vitro screening of 17 Alpine lichen species for their inhibitory activity against 5-lipoxygenase, microsomal prostaglandin E2 synthase-1 and nuclear factor kappa B revealed Cetrelia monachorum (Zahlbr.) W.L. Culb. & C.F. Culb. As conceivable source for novel anti-inflammatory compounds. Phytochemical investigation of the ethanolic crude extract resulted in the isolation and identification of 11 constituents, belonging to depsides and derivatives of orsellinic acid, olivetolic acid and olivetol. The two depsides imbricaric acid (4) and perlatolic acid (5) approved dual inhibitory activities on microsomal prostaglandin E2 synthase-1 (IC50 = 1.9 and 0.4 µM, resp.) and on 5-lipoxygenase tested in a cell-based assay (IC50 = 5.3 and 1.8 µM, resp.) and on purified enzyme (IC50 = 3.5 and 0.4 µM, resp.). Additionally, these two main constituents quantified in the extract with 15.22% (4) and 9.10% (5) showed significant inhibition of tumor necrosis factor alpha-induced nuclear factor kappa B activation in luciferase reporter cells with IC50 values of 2.0 and 7.0 µM, respectively. In a murine in vivo model of inflammation, 5 impaired the inflammatory, thioglycollate-induced recruitment of leukocytes to the peritoneum. The potent inhibitory effects on the three identified targets attest 4 and 5 a pronounced multi-target anti-inflammatory profile which warrants further investigation on their pharmacokinetics and in vivo efficacy.  相似文献   
7.

Background

Peroxisome proliferator-activated receptor gamma (PPARγ) agonists are clinically used to counteract hyperglycemia. However, so far experienced unwanted side effects, such as weight gain, promote the search for new PPARγ activators.

Methods

We used a combination of in silico, in vitro, cell-based and in vivo models to identify and validate natural products as promising leads for partial novel PPARγ agonists.

Results

The natural product honokiol from the traditional Chinese herbal drug Magnolia bark was in silico predicted to bind into the PPARγ ligand binding pocket as dimer. Honokiol indeed directly bound to purified PPARγ ligand-binding domain (LBD) and acted as partial agonist in a PPARγ-mediated luciferase reporter assay. Honokiol was then directly compared to the clinically used full agonist pioglitazone with regard to stimulation of glucose uptake in adipocytes as well as adipogenic differentiation in 3T3-L1 pre-adipocytes and mouse embryonic fibroblasts. While honokiol stimulated basal glucose uptake to a similar extent as pioglitazone, it did not induce adipogenesis in contrast to pioglitazone. In diabetic KKAy mice oral application of honokiol prevented hyperglycemia and suppressed weight gain.

Conclusion

We identified honokiol as a partial non-adipogenic PPARγ agonist in vitro which prevented hyperglycemia and weight gain in vivo.

General significance

This observed activity profile suggests honokiol as promising new pharmaceutical lead or dietary supplement to combat metabolic disease, and provides a molecular explanation for the use of Magnolia in traditional medicine.  相似文献   
8.
The molecular integrity of the active site of phytases from fungi is critical for maintaining phytase function as efficient catalytic machines. In this study, the molecular dynamics (MD) of two monomers of phytase B from Aspergillus niger, the disulfide intact monomer (NAP) and a monomer with broken disulfide bonds (RAP), were simulated to explore the conformational basis of the loss of catalytic activity when disulfide bonds are broken. The simulations indicated that the overall secondary and tertiary structures of the two monomers were nearly identical but differed in some crucial secondary–structural elements in the vicinity of the disulfide bonds and catalytic site. Disulfide bonds stabilize the β-sheet that contains residue Arg66 of the active site and destabilize the α-helix that contains the catalytic residue Asp319. This stabilization and destabilization lead to changes in the shape of the active–site pocket. Functionally important hydrogen bonds and atomic fluctuations in the catalytic pocket change during the RAP simulation. None of the disulfide bonds are in or near the catalytic pocket but are most likely essential for maintaining the native conformation of the catalytic site.

Abbreviations

PhyB - 2.5 pH acid phophatese from Aspergillus niger, NAP - disulphide intact monomer of Phytase B, RAP - disulphide reduced monomer of Phytase B, Rg - radius of gyration, RMSD - root mean square deviation, MD - molecular dynamics.  相似文献   
9.

Background:

Vascular growth is a prerequisite for adipose tissue (AT) development and expansion. Some AT cytokines and hormones have effects on vascular development, like vascular endothelial growth factor (VEGF‐A), angiopoietin (ANG‐1), ANG‐2 and angiopoietin‐like protein‐4 (ANGPTL‐4).

Methods:

In this study, the independent and combined effects of diet‐induced weight loss and exercise on AT gene expression and proteins levels of those angiogenic factors were investigated. Seventy‐nine obese males and females were randomized to: 1. Exercise‐only (EXO; 12‐weeks exercise without diet‐restriction), 2. Hypocaloric diet (DIO; 8‐weeks very low energy diet (VLED) + 4‐weeks weight maintenance diet) and 3. Hypocaloric diet and exercise (DEX; 8‐weeks VLED + 4‐weeks weight maintenance diet combined with exercise throughout the 12 weeks). Blood samples and fat biopsies were taken before and after the intervention.

Results:

Weight loss was 3.5 kg in the EXO group and 12.3 kg in the DIO and DEX groups. VEGF‐A protein was non‐significantly reduced in the weight loss groups. ANG‐1 protein levels were significantly reduced 22‐25% after all three interventions (P < 0.01). The ANG‐1/ANG‐2 ratio was also decreased in all three groups (P < 0.05) by 27‐38%. ANGPTL‐4 was increased in the EXO group (15%, P < 0.05) and 9% (P < 0.05) in the DIO group. VEGF‐A, ANG‐1, and ANGPTL‐4 were all expressed in human AT, but only ANGPTL‐4 was influenced by the interventions.

Conclusions:

Our data show that serum VEGF‐A, ANG‐1, ANG‐2, and ANGPTL‐4 levels are influenced by weight changes, indicating the involvement of these factors in the obese state. Moreover, it was found that weight loss generally was associated with a reduced angiogenic activity in the circulation.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号