排序方式: 共有56条查询结果,搜索用时 15 毫秒
1.
Irregular patterns of transgene silencing in allohexaploid oat 总被引:7,自引:0,他引:7
Pawlowski Wojciech P. Torbert Kimberly A. Rines Howard W. Somers David A. 《Plant molecular biology》1998,38(4):597-607
An irregular pattern of transgene silencing was revealed in expression and inheritance studies conducted over multiple generations following transgene introduction by microprojectile bombardment of allohexaploid cultivated oat (Avena sativa L.). Expression of two transgenes, bar and uidA, delivered on the same plasmid was investigated in 23 transgenic oat lines. Twenty-one transgenic lines, each derived from an independently selected transformed tissue culture, showed expression of both bar and uidA while two lines expressed only bar. The relationship of the transgenic phenotypes to the presence of the transgenes in the study was determined using (1) phenotypic scoring combined with Southern blot analyses of progeny, (2) coexpression of the two transgenic phenotypes since the two transgenes always cosegregated, and (3) reactivation of a transgenic phenotype in self-pollinated progenies of transgenic plants that did not exhibit a transgenic phenotype. Transgene silencing was observed in 19 of the 23 transgenic lines and resulted in distorted segregation of transgenic phenotypes in 10 lines. Silencing and inheritance distortions were irregular and unpredictable. They were often reversible in a subsequent generation of self-pollinated progeny and abnormally segregating progenies were as likely to trace back to parents that exhibited normal segregation in a previous generation as to parents showing segregation distortions. Possible causes of the irregular patterns of transgene silencing are discussed. 相似文献
2.
Gomez-Ferreria MA Rath U Buster DW Chanda SK Caldwell JS Rines DR Sharp DJ 《Current biology : CB》2007,17(22):1960-1966
As cells enter mitosis, centrosomes dramatically increase in size and ability to nucleate microtubules. This process, termed centrosome maturation, is driven by the accumulation and activation of gamma-tubulin and other proteins that form the pericentriolar material on centrosomes during G2/prophase. Here, we show that the human centrosomal protein, Cep192 (centrosomal protein of 192 kDa), is an essential component of the maturation machinery. Specifically, we have found that siRNA depletion of Cep192 results in a complete loss of functional centrosomes in mitotic but not interphase cells. In mitotic cells lacking Cep192, microtubules become organized around chromosomes but rarely acquire stable bipolar configurations. These cells contain normal numbers of centrioles but cannot assemble gamma-tubulin, pericentrin, or other pericentriolar proteins into an organized PCM. Alternatively, overexpression of Cep192 results in the formation of multiple, extracentriolar foci of gamma-tubulin and pericentrin. Together, our findings support the hypothesis that Cep192 stimulates the formation of the scaffolding upon which gamma-tubulin ring complexes and other proteins involved in microtubule nucleation and spindle assembly become functional during mitosis. 相似文献
3.
The complex series of movements that mediates chromosome segregation during mitosis is dependent on the attachment of microtubules to kinetochores, DNA-protein complexes that assemble on centromeric DNA. We describe the use of live-cell imaging and chromatin immunoprecipitation in S. cerevisiae to identify ten kinetochore subunits, among which are yeast homologs of microtubule binding proteins in animal cells. By analyzing conditional mutations in several of these proteins, we show that they are required for the imposition of tension on paired sister kinetochores and for correct chromosome movement. The proteins include both molecular motors and microtubule associated proteins (MAPs), implying that motors and MAPs function together in binding chromosomes to spindle microtubules. 相似文献
4.
The recovery of maize (Zea mays L.) chromosome addition lines of oat (Avena sativa L.) from oat x maize crosses enables us to analyze the structure and composition of individual maize chromosomes via the isolation and characterization of chromosome-specific cosmid clones. Restriction fragment fingerprinting, sequencing, and in situ hybridization were applied to discover a new family of knob associated tandem repeats, the TR1, which are capable of forming fold-back DNA segments, as well as a new family of centromeric tandem repeats, CentC. Analysis of knob and centromeric DNA segments revealed a complex organization in which blocks of tandemly arranged repeating units are interrupted by insertions of other repeated DNA sequences, mostly represented by individual full size copies of retrotransposable elements. There is an obvious preference for the integration/association of certain retrotransposable elements into knobs or centromere regions as well as for integration of retrotransposable elements into certain sites (hot spots) of the 180-bp repeat. DNA hybridization to a blot panel of eight individual maize chromosome addition lines revealed that CentC, TR1, and 180-bp tandem repeats are found in each of these maize chromosomes, but the copy number of each can vary significantly from about 100 to 25,000. In situ hybridization revealed variation among the maize chromosomes in the size of centromeric tandem repeats as well as in the size and composition of knob regions. It was found that knobs may be composed of either 180-bp or TR1, or both repeats, and in addition to large knobs these repeated elements may form micro clusters which are detectable only with the help of in situ hybridization. The association of the fold-back elements with knobs, knob polymorphism and complex structure suggest that maize knob may be consider as megatransposable elements. The discovery of the interspersion of retrotransposable elements among blocks of tandem repeats in maize and some other organisms suggests that this pattern may be basic to heterochromatin organization for eukaryotes. 相似文献
5.
6.
7.
Heiko Wurdak Shoutian Zhu Angelica Romero Mihaela Lorger James Watson Chih-yuan Chiang Jay Zhang Vanita S. Natu Luke L. Lairson John R. Walker Christopher M. Trussell Griffith R. Harsh Hannes Vogel Brunhilde Felding-Habermann Anthony P. Orth Loren J. Miraglia Daniel R. Rines Stephen L. Skirboll Peter G. Schultz 《Cell Stem Cell》2010,6(1):37-47
8.
The seasonal dynamics of the diatom genus Chaetoceros Ehrenbergwere investigated in Narragansett Bay, Rhode Island. Whole watersamples were collected weekly from July 1981 to October 1982at four locations in the lower Bay and were preserved, concentratedby settling and enumerated. Chaetoceros were most abundant inlate winterearly spring; a second peak occurred in thefall. As in many other temperate neritic areas, C. debilis,C. compressus and C. didymus were major components of die Chaetocerospopulation and could be found throughout the year. Species compositionand dynamics were quite similar at the Jerusalem, GSO Pier andWickford Harbor stations, but were markedly different in PettaquamscuttRiver, a reduced salinity tidal estuary. 相似文献
9.
The 17S/5.8S/26S ribosomal DNA (rDNA) sequences were mapped to the three satellited (SAT) chromosomes in the common hexaploid cultivated oat Avena sativa (2n = 6x = 42, AACCDD genomes). In situ hybridization and Southern hybridization of maize and (or) wheat rDNA probes to DNA from nullisomics derived from the cultivar 'Sun II' allowed the placement of rDNA sequences to the physical chromosomes. A restriction map was produced for the rDNA sequences of 'Sun II' using a maize probe from the transcribed region of the 17S/26S rDNA repeat. The set of rDNA repeats on SAT 2 of 'Sun II' possesses a 10.5-kb EcoRI fragment not found in the rDNA repeats of SAT 1 and SAT 8. This 10.5-kb fragment results from the absence of an EcoRI site in the intergenic spacer (IGS) of SAT 2 repeats. Extensive polymorphisms were demonstrated for three hexaploid Avena species, namely, the Mediterranean-type cultivated oat A. byzantina and the wild species A. sterilis and A. fatua. However, geographically diverse A. sativa cultivars displayed little rDNA variation. In contrast with all of the A. sativa cultivars examined, the A. sterilis accessions generally lacked the 10.5-kb EcoRI fragment. The results support the hypothesis that A. sativa accessions descend from a limited ancestral cultivated population. The rDNA polymorphisms are attributed to differences in lengths and restriction sites of the IGS. 相似文献
10.
C-banded karyotypes and polymorphisms in hexaploid oat accessions (Avena spp.) using Wright's stain.
A chromosome C-banding protocol using Wright's stain was employed to compare chromosomes in cultivars and wild accessions of several hexaploid oat taxa (Avena spp.). This technique permits the identification of each of the 21 somatic hexaploid oat chromosomes. Digital images of C-banded cells were captured on computer and used to construct karyotypes of several oat accessions. Polymorphisms for C-bands among oat cultivars and wild accessions are described. These banding polymorphisms can be used to trace introgression of chromosomes from wild sources and to provide physical markers on the genetic map for oat. Although C-banding permits the identification of likely C-genome chromosomes based on comparisons with C-banding patterns in diploid and tetraploid Avena species, the A and D genomes cannot be readily differentiated based on their banding patterns. 相似文献