首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   381篇
  免费   29篇
  国内免费   1篇
  411篇
  2023年   4篇
  2022年   6篇
  2021年   13篇
  2020年   6篇
  2019年   9篇
  2018年   12篇
  2017年   10篇
  2016年   8篇
  2015年   33篇
  2014年   22篇
  2013年   29篇
  2012年   45篇
  2011年   27篇
  2010年   15篇
  2009年   22篇
  2008年   22篇
  2007年   20篇
  2006年   10篇
  2005年   9篇
  2004年   7篇
  2003年   4篇
  2002年   4篇
  2001年   5篇
  2000年   5篇
  1999年   8篇
  1998年   7篇
  1997年   7篇
  1996年   5篇
  1992年   10篇
  1991年   6篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1977年   4篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有411条查询结果,搜索用时 15 毫秒
1.
A low pH method of liposome-membrane fusion (Schneider et al., 1980, Proc. Natl. Acad. Sci. U. S. A. 77:442) was used to enrich the mitochondrial inner membrane lipid bilayer 30-700% with exogenous phospholipid and cholesterol. By varying the phospholipid-to- cholesterol ratio of the liposomes it was possible to incorporate specific amounts of cholesterol (up to 44 mol %) into the inner membrane bilayer in a controlled fashion. The membrane surface area increased proportionally to the increase in total membrane bilayer lipid. Inner membrane enriched with phospholipid only, or with phospholipid plus cholesterol up to 20 mol %, showed randomly distributed intramembrane particles (integral proteins) in the membrane plane, and the average distance between intramembrane particles increased proportionally to the amount of newly incorporated lipid. Membranes containing between 20 and 27 mol % cholesterol exhibited small clusters of intramembrane particles while cholesterol contents above 27 mol % resulted in larger aggregations of intramembrane particles. In phospholipid-enriched membranes with randomly dispersed intramembrane particles, electron transfer activities from NADH- and succinate-dehydrogenase to cytochrome c decreased proportionally to the increase in distance between the particles. In contrast, these electron- transfer activities increased with decreasing distances between intramembrane particles brought about by cholesterol incorporation. These results indicate that (a) catalytically interacting redox components in the mitochondrial inner membrane such as the dehydrogenase complexes, ubiquinone, and heme proteins are independent, laterally diffusible components; (b) the average distance between these redox components is effected by the available surface area of the membrane lipid bilayer; and (c) the distance over which redox components diffuse before collision and electron transfer mediates the rate of such transfer.  相似文献   
2.
Alzheimer’s disease drug discovery regarding exploration into the molecules and processes has focused on the intrinsic causes of the brain disorder correlated with the accumulation of amyloid-β. An anti-amyloidogenic bis-styrylbenzene derivative, KMS80013, showed excellent oral bioavailability (F = 46.2%), facilitated brain penetration (26%, iv) in mouse and target specific in vivo efficacy in acute AD mouse model attenuating the cognitive deficiency in Y-maze test. Acute toxicity (LD50 >2000 mg/kg) and hERG channel inhibition (14% at 10 μM) results indicated safety of KMS80013.  相似文献   
3.
  1. Soil C is the largest C pool in forest ecosystems that contributes to C sequestration and mitigates climate change. Tree diversity enhances forest productivity, so diversifying the tree species composition, notably in managed forests, could increase the quantity of organic matter being transferred to soils and alter other soil properties relevant to the C cycle.
  2. A ten‐year‐old tree diversity experiment was used to study the effects of tree identity and diversity (functional and taxonomic) on soils. Surface (0–10 cm) mineral soil was repeatedly measured for soil C concentration, C:N ratio, pH, moisture, and temperature in twenty‐four tree species mixtures and twelve corresponding monocultures (replicated in four blocks).
  3. Soil pH, moisture, and temperature responded to tree diversity and identity. Greater productivity in above‐ and below‐ground tree components did not increase soil C concentration. Soil pH increased and soil moisture decreased with functional diversity, more specifically, when species had different growth strategies and shade tolerances. Functional identity affected soil moisture and temperature, such that tree communities with more slow‐growing and shade‐tolerant species had greater soil moisture and temperature. Higher temperature was measured in communities with broadleaf‐deciduous species compared to communities with coniferous‐evergreen species.
  4. We conclude that long‐term soil C cycling in forest plantations will likely respond to changes in soil pH, moisture, and temperature that is mediated by tree species composition, since tree species affect these soil properties through their litter quality, water uptake, and physical control of soil microclimates.
  相似文献   
4.
The delivery of copper to mammary gland and milk and the effects of lactation were examined in rats. Traces of (67)Cu/(64)Cu(II) were injected intraperitoneally or intravenously into virgin rats or lactating rats (2-5 days postpartum), and incorporation into blood, milk, and tissues was monitored. In virgin rats, most of the isotope first entered the liver and kidney. In lactating rats, almost 60% went directly to the mammary gland. Uptake rates and copper contents of the mammary gland were 20-fold higher in lactation. (67)Cu/(64)Cu appeared in milk and milk ceruloplasmin as rapidly as in mammary tissue and when there was no (67)Cu/(64)Cu-ceruloplasmin in the maternal plasma. Plasma (125)I-labeled albumin entered milk much more slowly. Milk ceruloplasmin (10 mg/l) had 25% of the (67)Cu/(64)Cu. Milk copper was 3.3 mg/l. Thus lactation markedly enhances the avidity of the mammary gland for copper, diverting most of it from liver and kidney to that tissue. Also, the primary source of milk ceruloplasmin is the mammary gland and not the maternal plasma.  相似文献   
5.
Studies of biodiversity–ecosystem function in treed ecosystems have generally focused on aboveground functions. This study investigates intertrophic links between tree diversity and soil microbial community function and composition. We examined how microbial communities in surface mineral soil responded to experimental gradients of tree species richness (SR ), functional diversity (FD ), community‐weighted mean trait value (CWM ), and tree identity. The site was a 4‐year‐old common garden experiment near Montreal, Canada, consisting of deciduous and evergreen tree species mixtures. Microbial community composition, community‐level physiological profiles, and respiration were evaluated using phospholipid fatty acid (PLFA ) analysis and the MicroResp? system, respectively. The relationship between tree species richness and glucose‐induced respiration (GIR ), basal respiration (BR ), metabolic quotient (qCO 2) followed a positive but saturating shape. Microbial communities associated with species mixtures were more active (basal respiration [BR ]), with higher biomass (glucose‐induced respiration [GIR ]), and used a greater number of carbon sources than monocultures. Communities associated with deciduous tree species used a greater number of carbon sources than those associated with evergreen species, suggesting a greater soil carbon storage capacity. There were no differences in microbial composition (PLFA ) between monocultures and SR mixtures. The FD and the CWM of several functional traits affected both BR and GIR . In general, the CWM of traits had stronger effects than did FD , suggesting that certain traits of dominant species have more effect on ecosystem processes than does FD . Both the functions of GIR and BR were positively related to aboveground tree community productivity. Both tree diversity (SR ) and identity (species and functional identity—leaf habit) affected soil microbial community respiration, biomass, and composition. For the first time, we identified functional traits related to life‐history strategy, as well as root traits that influence another trophic level, soil microbial community function, via effects on BR and GIR .  相似文献   
6.
Ants in the Neotropical genus Sericomyrmex Mayr cultivate fungi for food. Both ants and fungi are obligate, coevolved symbionts. The taxonomy of Sericomyrmex is problematic because the morphology of the worker caste is generally homogeneous across all of the species within the genus, species limits are vague, and the relationships between them are unknown. We used ultraconserved elements (UCEs) as genome‐scale markers to reconstruct evolutionary history and to infer species boundaries in Sericomyrmex. We recovered an average of ~990 UCE loci for 88 Sericomyrmex samples from across the geographical range of the genus as well as for five outgroup taxa. Using maximum likelihood and species‐tree approaches, we recovered nearly identical topologies across datasets with 50–95% matrix completeness. We identify nine species‐level lineages in Sericomyrmex, including two new species. This is less than the previously described 19 species, even accounting for two species for which we had no UCE samples, which brings the total number of Sericomyrmex species to 11. Divergence‐dating analyses recovered 4.3 Ma as the crown‐group age estimates for Sericomyrmex, indicating a recent, rapid radiation. We also sequenced mitochondrial cytochrome oxidase subunit I (COI) for 125 specimens. Resolution and support for clades in our COI phylogeny are weak, indicating that COI is not an appropriate species‐delimitation tool. However, taxa within species consistently cluster together, suggesting that COI is useful as a species identification (‘DNA barcoding’) tool. We also sequenced internal transcribed spacer (ITS) and large subunit (LSU) for 32 Sericomyrmex fungal cultivars. The fungal phylogeny confirms that Sericomyrmex fungi are generalized higher‐attine cultivars, interspersed with Trachymyrmex‐associated fungal species, indicating cultivar sharing and horizontal transfer between these two genera. Our results indicate that UCEs offer immense potential for delimiting and resolving relationships of problematic, recently diverged species.  相似文献   
7.
A thin-filament-regulated latch-bridge model of smooth muscle contraction is proposed to integrate thin-filament-based inhibition of actomyosin ATPase activity with myosin phosphorylation in the regulation of smooth muscle mechanics. The model included two latch-bridge cycles, one of which was identical to the four-state model as proposed by Hai and Murphy (Am J Physiol Cell Physiol 255: C86-C94, 1988), whereas the ultraslow cross-bridge cycle has lower cross-bridge cycling rates. The model-fitted phorbol ester induced slow contractions at constant myosin phosphorylation and predicted steeper dependence of force on myosin phosphorylation in phorbol ester-stimulated smooth muscle. By shifting cross bridges between the two latch-bridge cycles, the model predicts that a smooth muscle cell can either maintain force at extremely low-energy cost or change its contractile state rapidly, if necessary. Depending on the fraction of cross bridges engaged in the ultraslow latch-bridge cycle, the model predicted biphasic kinetics of smooth muscle mechanics and variable steady-state dependencies of force and shortening velocity on myosin phosphorylation. These results suggest that thin-filament-based regulatory proteins may function as tuners of actomyosin ATPase activity, thus allowing a smooth muscle cell to have two discrete cross-bridge cycles with different cross-bridge cycling rates.  相似文献   
8.
9.
In order to observe the antigenic localization in the tissues of Paragonimus westermani of developmental stages, immunogold labeling method was applied using serum of the cats which were infected with isolated metacercariae from Cambaroides similis. The sectioned worm tissues from each developmental stage were embedded in Lowicryl HM 20 medium, stained with infected serum IgG and protein A gold complex (particle size: 12 nm) and observed by electron microscopy. In the young adult worm tissue of 4 weeks after infection with metacercariae, the gold particles were specifically concentrated on the tegumental syncytium and cytoplasm of the tegumental cells as well as the secretory granules in the parenchymal tissue. The antigenic materials in the adult worm tissue were specifically concentrated on the secretory granules in the parenchymal tissue, the cytoplasm between granules in the vitelline gland and the epithelial lamella in the lumen of the caecum.  相似文献   
10.
During eukaryotic cell division, the sister chromatids of duplicated chromosomes are pulled apart by microtubules, which connect via kinetochores. The kinetochore is a multiprotein structure that links centromeres to microtubules, and that emits molecular signals in order to safeguard the equal distribution of duplicated chromosomes over daughter cells. Although microtubule‐mediated chromosome segregation is evolutionary conserved, kinetochore compositions seem to have diverged. To systematically inventory kinetochore diversity and to reconstruct its evolution, we determined orthologs of 70 kinetochore proteins in 90 phylogenetically diverse eukaryotes. The resulting ortholog sets imply that the last eukaryotic common ancestor (LECA) possessed a complex kinetochore and highlight that current‐day kinetochores differ substantially. These kinetochores diverged through gene loss, duplication, and, less frequently, invention and displacement. Various kinetochore components co‐evolved with one another, albeit in different manners. These co‐evolutionary patterns improve our understanding of kinetochore function and evolution, which we illustrated with the RZZ complex, TRIP13, the MCC, and some nuclear pore proteins. The extensive diversity of kinetochore compositions in eukaryotes poses numerous questions regarding evolutionary flexibility of essential cellular functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号