首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   7篇
  137篇
  2023年   1篇
  2022年   2篇
  2018年   1篇
  2016年   3篇
  2015年   7篇
  2014年   13篇
  2013年   9篇
  2012年   8篇
  2011年   9篇
  2010年   11篇
  2009年   7篇
  2008年   7篇
  2007年   6篇
  2006年   3篇
  2005年   4篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   4篇
  1985年   2篇
  1982年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1971年   2篇
  1967年   1篇
排序方式: 共有137条查询结果,搜索用时 31 毫秒
1.
One‐third of the human proteome is comprised of membrane proteins, which are particularly vulnerable to misfolding and often require folding assistance by molecular chaperones. Calnexin (CNX), which engages client proteins via its sugar‐binding lectin domain, is one of the most abundant ER chaperones, and plays an important role in membrane protein biogenesis. Based on mass spectrometric analyses, we here show that calnexin interacts with a large number of nonglycosylated membrane proteins, indicative of additional nonlectin binding modes. We find that calnexin preferentially bind misfolded membrane proteins and that it uses its single transmembrane domain (TMD) for client recognition. Combining experimental and computational approaches, we systematically dissect signatures for intramembrane client recognition by calnexin, and identify sequence motifs within the calnexin TMD region that mediate client binding. Building on this, we show that intramembrane client binding potentiates the chaperone functions of calnexin. Together, these data reveal a widespread role of calnexin client recognition in the lipid bilayer, which synergizes with its established lectin‐based substrate binding. Molecular chaperones thus can combine different interaction modes to support the biogenesis of the diverse eukaryotic membrane proteome.  相似文献   
2.
Greater understanding of ape comparative anatomy and evolutionary history has brought a general appreciation that the hominoid radiation is characterized by substantial homoplasy.1–4 However, little consensus has been reached regarding which features result from repeated evolution. This has important implications for reconstructing ancestral states throughout hominoid evolution, including the nature of the Pan‐Homo last common ancestor (LCA). Advances from evolutionary developmental biology (evo‐devo) have expanded the diversity of model organisms available for uncovering the morphogenetic mechanisms underlying instances of repeated phenotypic change. Of particular relevance to hominoids are data from adaptive radiations of birds, fish, and even flies demonstrating that parallel phenotypic changes often use similar genetic and developmental mechanisms. The frequent reuse of a limited set of genes and pathways underlying phenotypic homoplasy suggests that the conserved nature of the genetic and developmental architecture of animals can influence evolutionary outcomes. Such biases are particularly likely to be shared by closely related taxa that reside in similar ecological niches and face common selective pressures. Consideration of these developmental and ecological factors provides a strong theoretical justification for the substantial homoplasy observed in the evolution of complex characters and the remarkable parallel similarities that can occur in closely related taxa. Thus, as in other branches of the hominoid radiation, repeated phenotypic evolution within African apes is also a distinct possibility. If so, the availability of complete genomes for each of the hominoid genera makes them another model to explore the genetic basis of repeated evolution.  相似文献   
3.

Background  

Seeds of the legume plant Lathyrus sativus, which is grown in arid and semi arid tropical regions, contain Diamino Propionic acid (DAP). DAP is a neurotoxin, which, when consumed, causes a disease called Lathyrism. Lathryrism may manifest as Neurolathyrism or Osteolathyrism, in which the nervous system, and bone formation respectively, are affected. DAP ammonia lyase is produced by a few microorganisms such as Salmonella typhi, Salmonella typhimurium and Pseudomonas, and is capable of detoxifying DAP.  相似文献   
4.

Background

Although simulation studies show that combining multiple breeds in one reference population increases accuracy of genomic prediction, this is not always confirmed in empirical studies. This discrepancy might be due to the assumptions on quantitative trait loci (QTL) properties applied in simulation studies, including number of QTL, spectrum of QTL allele frequencies across breeds, and distribution of allele substitution effects. We investigated the effects of QTL properties and of including a random across- and within-breed animal effect in a genomic best linear unbiased prediction (GBLUP) model on accuracy of multi-breed genomic prediction using genotypes of Holstein-Friesian and Jersey cows.

Methods

Genotypes of three classes of variants obtained from whole-genome sequence data, with moderately low, very low or extremely low average minor allele frequencies (MAF), were imputed in 3000 Holstein-Friesian and 3000 Jersey cows that had real high-density genotypes. Phenotypes of traits controlled by QTL with different properties were simulated by sampling 100 or 1000 QTL from one class of variants and their allele substitution effects either randomly from a gamma distribution, or computed such that each QTL explained the same variance, i.e. rare alleles had a large effect. Genomic breeding values for 1000 selection candidates per breed were estimated using GBLUP modelsincluding a random across- and a within-breed animal effect.

Results

For all three classes of QTL allele frequency spectra, accuracies of genomic prediction were not affected by the addition of 2000 individuals of the other breed to a reference population of the same breed as the selection candidates. Accuracies of both single- and multi-breed genomic prediction decreased as MAF of QTL decreased, especially when rare alleles had a large effect. Accuracies of genomic prediction were similar for the models with and without a random within-breed animal effect, probably because of insufficient power to separate across- and within-breed animal effects.

Conclusions

Accuracy of both single- and multi-breed genomic prediction depends on the properties of the QTL that underlie the trait. As QTL MAF decreased, accuracy decreased, especially when rare alleles had a large effect. This demonstrates that QTL properties are key parameters that determine the accuracy of genomic prediction.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0124-6) contains supplementary material, which is available to authorized users.  相似文献   
5.
BACKGROUND: Flow cytometric fluorescence resonance energy transfer (FCET) is an efficient method to map associations between biomolecules because of its high sensitivity to changes in molecular distances in the range of 1-10 nm. However, the requirement for a dual-laser instrument and the need for a relatively high signal-to-noise system (i.e., high expression level of the molecules) pose limitations to a wide application of the method. METHODS: Antibodies conjugated to cyanines 3 and 5 (Cy3 and Cy5) were used to label membrane proteins on the cell surface. FCET measurements were made on a widely used benchtop dual-laser flow cytometer, the FACSCalibur, by using cell-by-cell analysis of energy transfer efficiency.ResultsTo increase the accuracy of FCET measurements, we applied a long wavelength donor-acceptor pair, Cy3 and Cy5, which beneficially affected the signal-to-noise ratio in comparison with the classic pair of fluorescein and rhodamine. A new algorithm for cell-by-cell correction of autofluorescence further improved the sensitivity of the technique; cell subpopulations with only slightly different FCET efficiencies could be identified. The new FCET technique was tested on various direct and indirect immunofluorescent labeling strategies. The highest FCET values could be measured when applying direct labeling on both (donor and acceptor) sides. Upon increasing the complexity of the labeling scheme by introducing secondary antibodies, we detected a decrease in the energy transfer efficiency. CONCLUSIONS: We developed a new FCET protocol by applying long wavelength excitation and detection of fluorescence and by refining autofluorescence correction. The increased accuracy of the new method makes cells with low receptor expression amenable to FCET investigation, and the new approach can be implemented easily on a commercially available dual-laser flow cytometer, such as a FACSCalibur.  相似文献   
6.
Although several studies have demonstrated the efficacy of the vasopressin analog DDAVP in enhancing human memory, no previous study has reported the dose-response relationship of DDAVP to memory in healthy young adults. The present study was undertaken to explore the dose-response curve for DDAVP on recall of implicational sentences. Five doses of DDAVP (0, 5, 15, 30, and 60 micrograms) were administered intranasally to healthy young adult male volunteers. Results demonstrated a facilitation in cued recall after treatment with the 60-micrograms dose and a general impairment in recall after treatment with the 15-micrograms dose. These effects were independent of subject's weight, vocabulary ability, and concentration of salivary cortisol.  相似文献   
7.
We have previously described the functional activity of a human TCR specific for an HLA-A2-presented peptide derived from the Wilms tumor Ag 1 (WT1). Recent studies showed that the expression and function of human TCR was improved by the introduction of an additional disulfide bond between the alpha- and beta-chains or by the exchange of the human constant region for murine sequences. In this study, we analyzed the functional activity of WT1-TCR variants expressed in Jurkat cells and in primary T cells. The introduction of cysteine residues or murine constant sequences into the WT1-TCR did not result in a global reduction of mispairing with wild-type TCR chains. Instead, the level of mispairing was affected by the variable region sequences of the wild-type TCR chains. The analysis of freshly transduced peripheral blood T cells showed that the transfer of modified TCR constructs generated a higher frequency of Ag-responsive T cells than the transfer of the wild-type TCR. After several rounds of peptide stimulation this difference was no longer observed, as all transduced T cell populations accumulated approximately 90% of Ag-responsive T cells. Although the Ag-responsive T cells expressing the modified TCR bound the HLA-A2/WT1 tetramer more efficiently than T cells expressing the wild-type TCR, this did not improve the avidity of transduced T cells nor did it result in a measurable enhancement in IFN-gamma production and cytotoxic activity. This indicated that the enhanced tetramer binding of modified WT1-TCR variants was not associated with improved WT1-specific T cell function.  相似文献   
8.
Ly-6A is a glycosyl-phosphatidylinositol (GPI)-anchored molecule that participates in murine T cell activation. Activation of T cell hybridomas with anti-Ly-6A monoclonal antibody (mAb) leads to production of interleukin-2 (IL-2), but also to a paradoxical growth inhibition, which was used to select for signaling mutants. Fifteen subclones derived from two independent mutageneses and anti-Ly-6A selection were characterized. Thirteen subclones responded poorly or not at all to soluble anti-Ly-6A mAb. Although the selective pressure was exerted through Ly-6A, only one mutant did not express the Ly-6A antigen. Interestingly, 10 of the 15 subclones expressed either nondetectable or a very low level of T cell receptor/CD3 complex (TCR/CD3). Preferential expansion of TCR/CD3 expression mutants following anti-Ly-6A selection further established functional linkage between Ly-6A and TCR/CD3 complex. The mechanism of the functional coupling was investigated by analyzing the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), one of the early events in T cell activation. We showed that PIP2 was not hydrolyzed in response to anti-Ly-6A in TCR/CD3-negative mutants. Aluminum fluoride, which activates G protein directly, did induce PIP2 hydrolysis in these cells. These data suggest that activation signals originated from Ly-6A must be transmitted first to TCR/CD3 complex, which then couples to the G protein/phospholipase C system. A similar requirement also applies to the Thy-1 protein and lectin receptors. Thus, the TCR/CD3 complex plays a central role in the integration and transmission of activation signals that originated from several T cell surface molecules.  相似文献   
9.
In Western Europe, many pond owners introduce amphibians for ornamental purposes. Although indigenous amphibians are legally protected in most European countries, retailers are circumventing national and international legislation by selling exotic nonprotected sibling species. We investigated to what extent non‐native species of the European water frog complex (genus Pelophylax) have become established in Belgium, using morphological, mitochondrial and nuclear genetic markers. A survey of 87 sampling sites showed the presence of non‐native water frogs at 47 locations, mostly Marsh frogs (Pelophylax ridibundus). Surprisingly, at least 19% of all these locations also harboured individuals with mitochondrial haplotypes characteristic of Anatolian water frogs (Pelophylax cf. bedriagae). Nuclear genotyping indicated widespread hybridization and introgression between P. ridibundus and P. cf. bedriagae. In addition, water frogs of Turkish origin obtained through a licensed retailer, also contained P. ridibundus and P. cf. bedriagae, with identical haplotypes to the wild Belgian populations. Although P. ridibundus might have invaded Belgium by natural range expansion from neighbouring countries, our results suggest that its invasion was at least partly enhanced by commercial trade, with origins as far as the Middle East. Also the invasion and rapid spread of Anatolian lineages, masked by their high morphological similarity to P. ridibundus, is likely the result of unregulated commercial trade. We expect that Anatolian frogs will further invade the exotic as well as the native range of P. ridibundus and other Pelophylax species elsewhere in Western and Central Europe, with risks of large‐scale hybridization and introgression.  相似文献   
10.
Muscarinic activation of tracheal smooth muscle (TSM) involves a M3AChR/heterotrimeric-G protein/NPR-GC coupling mechanism. G protein activators Mastoparan (MAS) and Mastoparan-7 stimulated 4- and 10-fold the NPR-GC respectively, being insensitive to PTX and antibodies against Gαi/o subfamily. Muscarinic and MAS stimulation of NPR-GC was blocked by antibodies against C-terminal of Gαq16, whose expression was confirmed by RT-PCR. However, synthetic peptides from C-terminal of Gαq15/16 stimulated the NPR-GC. Coupling of αq16 to M3AChR is supported by MAS decreased [3H]QNB binding, being abolished after M3AChR-4-DAMP-alkylation. Anti-i3M3AChR antibodies blocked the muscarinic activation of NPR-GC, and synthetic peptide from i3M3AChR (M3P) was more potent than MAS increasing GTPγ [35S] and decreasing the [3H]QNB activities. Coupling between NPR-GC and Gαq16 was evaluated by using trypsin-solubilized-fraction from TSM membranes, which displayed a MAS-sensitive-NPR-GC activity, being immunoprecipitated with anti-Gαq16, also showing an immunoreactive heterotrimeric-G-β -subunit. These data support the existence of a novel transducing cascade, involving Gαq16β γ coupling M3AChR to NPR-GC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号