首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   10篇
  2020年   1篇
  2018年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   4篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   4篇
  2002年   1篇
  2001年   4篇
  2000年   4篇
  1999年   3篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
  1973年   2篇
  1972年   1篇
排序方式: 共有75条查询结果,搜索用时 202 毫秒
1.
Summary In the isolated bullfrog cornea, three calcium channel antagonists had dose-dependent inhibitory effects on the Cl-originated short-circuit current (SCC). Their order of decreasing potency was bepridil, verapamil and diltiazem. One millimolar diltiazem inhibited the SCC by 98% and subsequent incubation with the calcium ionophore A23187 had no restorative effect. Increasing the bathing solution Ca concentration from 0.05 to 15mm, however, decreased diltiazem's inhibitory efficacy. This antagonist depolarized the intracellular potential differenceV m from –54 to –18 mV (tear: reference) and the voltage divider ratioFR 0 decreased from 0.58 to 0.30, suggesting an increase in basolateral membrane electrical resistance. Additional indication of a basolateral membrane effect by the drug was that preincubation with 105 m amphotericin B in Cl-free Ringer's did not eliminate the inhibitory effect of the drug on the Na- and K-elicited SCC. In the absence of amphotericin B in Cl-free Ringer's (SCC=0), 1 ×103 m diltiazem depolarized theV m from –78 to –9 mV suggesting that the increase in basolateral membrane resistance was due to K channel blockade. Diltiazem (1×103 m) significantly decreased cyclic AMP content; however, isoproterenol in the presence of the drug increased cyclic AMP fourfold without having any restorative effect on the inhibited SCC. Therefore, the inhibition of the Cl-originated SCC resulting from an increase in basolateral membrane K resistance is not caused by a decline in cyclic AMP content. In plasma membrane-enriched fractions prepared from broken cell preparations of bovine corneal epithelium, 1×103 m diltiazem had no inhibitory effects on either Na,K-ATPase or Ca,Mg-ATPase activities. These latter effects further point to the selectivity of diltiazem as an inhibitor of K-channel activity, but do not preclude a Ca-channel blocker effect by the drug in the micromolar range.  相似文献   
2.
MF-18, one of the monoclonal antibodies generated to chicken myosin, cross-reacted with rabbit skeletal myosin subfragment-1 (S1). Utilizing an improved procedure of immuno-blotting, a decrease in reactivity of MF-18 to S1 by trinitrophenylation was observed. This indicates that the reactive lysyl residue is very close to the hapten site. This is consistent with the evidence that the hapten site resides in the 26,000 dalton tryptic fragment of S1. Use of such antibodies as labels may open the way to determining the location of specific hapten sites in the three-dimensional image of actin-S1 complex reconstructed from the electron micrographs.  相似文献   
3.
Monoclonal antibodies (McAbs) specific for the C-proteins of chicken pectoralis major and anterior latissimus dorsi (ALD) muscles have been produced and characterized. Antibody specificity was demonstrated by solid phase radioimmunoassay (RIA), immunoblots, and immunofluorescence cytochemistry. Both McAbs MF-1 (or MF-21) and ALD-66 bound to myofibrillar proteins of approximately 150,000 daltons; the former antibody reacted with pectoralis but not ALD myofibrils, whereas the latter recognized ALD but not pectoralis myofibrils. Chromatographic elution of the antigens from DEAE-Sephadex, and their distribution in the A-band, support the conclusion that both of these antibodies recognize variant isoforms of C-protein. Since both McAbs react with a protein of similar molecular weight in the A-band of all myofibrils of the posterior latissimus dorsi (PLD) muscle, we suggest that either another isoform of C-protein exists in the PLD muscle or both pectoralis and ALD-like isoforms coexist in the A-bands of PLD muscle.  相似文献   
4.
Calcium binding to proteins containing the 'EF-hand' structural motif regulates a variety of biochemical processes including muscle contraction. Techniques such as protein crystallography, site-directed mutagenesis and domain transplantation experiments are being used to unravel the conformational changes induced by calcium binding.  相似文献   
5.
Summary Transepithelial Li+ influx was studied in the isolated epithelium from abdominal skin ofRana catesbeiana. With Na+-Ringer's as inside medium and Li+-Ringer's as outside medium, the Li+ influx across the epithelium was 15.6 A/cm2. This influx was considerably reduced by removal of either Na+ or K+ from the inside bath or by the addition of ouabain or amiloride. Epithelial K+ or Na+ concentration was respectively lower in epithelia bathed in K+-free Ringer's or Na+-free Ringer's. In conditions of negligible Na+ transport, a 20mm Li+ gradient (outin) produced across the short-circuited epithelium a Li+ influx of 11.8 A/cm2 and a mean short-circuit current of 10.2 A/cm2. The same Li+ gradient in the opposite direction produced a Li+ outflux of only 1.9 A/cm2. With equal Li+ concentration (10.3 and 20.6mm) on both sides of the epithelium, plus Na+ in the inside solution only, a stable Li+-dependent short-circuit current was observed. Net Li+ movement (outin) was also indirectly determined in the presence of an opposing Li+ gradient. Although Li+ does not substitute for Na+ as an activator of the (Na++K+)-ATPase from frog skin epithelium, Li+ influx appears to be related to Na+–K+ pump activity. It is proposed that the permeability of the outer barrier to Na+ and Li+ is regulated by the electrical gradient produced by electrogenic Na+–K+ pumps located in the membrane of the deeper epithelial cells.  相似文献   
6.
In hypertonicity-stressed (i.e., 600 mOsm) SV40-immortalized rabbit and human corneal epithelial cell layers (RCEC and HCEC, respectively), we characterized the relationship between time-dependent changes in translayer resistance, relative cell volume and modulation of MAPK superfamily activities. Sulforhodamine B permeability initially increased by 1.4- and 2-fold in RCEC and HCEC, respectively. Subsequently, recovery to its isotonic level only occurred in RCEC. Light scattering revealed that in RCEC 1) regulatory volume increase (RVI) extent was 20% greater; 2) RVI half-time was 2.5-fold shorter. However, inhibition of Na-K-2Cl cotransporter and Na/K-ATPase activity suppressed the RVI response more in HCEC. MAPK activity changes were as follows: 1) p38 was wave-like and faster as well as larger in RCEC than in HCEC (90- and 18-fold, respectively); 2) increases in SAPK/JNK activity were negligible in comparison to those of p38; 3) Erk1/2 activity declined to 30-40% of their basal values. SB203580, a specific p38 inhibitor, dose dependently suppressed the RVI responses in both cell lines. However, neither U0126, which inhibits MEK, the kinase upstream of Erk, nor SP600125, inhibitor of SAPK/JNK, had any effect on this response. Taken together, sufficient activation of the p38 limb of the MAPK superfamily during a hypertonic challenge is essential for maintaining epithelial cell volume and translayer resistance. On the other hand, Erk1/2 activity restoration seems to be dependent on cell volume recovery.  相似文献   
7.
Troponin I (TnI) peptides (TnI inhibitory peptide residues 104-115, Ip; TnI regulatory peptide resides 1-30, TnI1-30), recombinant Troponin C (TnC) and Troponin I mutants were used to study the structural and functional relationship between TnI and TnC. Our results reveal that an intact central D/E helix in TnC is required to maintain the ability of TnC to release the TnI inhibition of the acto-S1-TM ATPase activity. Ca(2+)-titration of the TnC-TnI1-30 complex was monitored by circular dichroism. The results show that binding of TnI1-30 to TnC caused a three-folded increase in Ca(2+) affinity in the high affinity sites (III and IV) of TnC. Gel electrophoresis and high performance liquid chromatography (HPLC) studies demonstrate that the sequences of the N- and C-terminal regions of TnI interact in an anti-parallel fashion with the corresponding N- and C-domain of TnC. Our results also indicate that the N- and C-terminal domains of TnI which flank the TnI inhibitory region (residues 104 to 115) play a vital role in modulating the Ca(2+)- sensitive release of the TnI inhibitory region by TnC within the muscle filament. A modified schematic diagram of the TnC/TnI interaction is proposed.  相似文献   
8.
The in vitro Ca(2+) regulation of the actomyosin Mg(2+)-ATPase at physiological ratios of actin, tropomyosin, and troponin occurs only in the presence of troponin T. We have previously demonstrated that a polypeptide corresponding to the first 191 amino acids of troponin T (TnT-(1-191)) activates the actomyosin Mg(2+)-ATPase in the presence of tropomyosin. In order to further characterize this activation domain, we constructed troponin T fragments corresponding to residues 1-157 (TnT-(1-157)), 1-76 (TnT-(1-76)), 77-157 (TnT-(77-157)), 77-191 (TnT-(77-191)), and 158-191 (TnT-(158-191)). Assays using these fragments demonstrated the following: (a) residues 1-76 do not bind to tropomyosin or actin; (b) residues 158-191 bind to actin cooperatively but not to tropomyosin; (c) the sequence 77-157 is necessary for troponin interaction with residue 263 of tropomyosin; (d) TnT-(77-191) on its own activates the actomyosin ATPase activity as described previously for TnT-(1-191). TnT-(1-157), TnT-(1-76), TnT-(77-157), TnT-(158-191), and combinations of TnT-(158-191) with TnT-(1-157) or TnT-(77-157) showed no effect on the ATPase activity. We conclude that the activation of actomyosin ATPase activity is mediated by a direct interaction between amino acids 77 and 191 of troponin T, tropomyosin, and actin.  相似文献   
9.
Global interest in sugarcane has increased significantly in recent years due to its economic impact on sustainable energy production. Sugarcane breeding and better agronomic practices have contributed to a huge increase in sugarcane yield in the last 30?years. Additional increases in sugarcane yield are expected to result from the use of biotechnology tools in the near future. Genetically modified (GM) sugarcane that incorporates genes to increase resistance to biotic and abiotic stresses could play a major role in achieving this goal. However, to bring GM sugarcane to the market, it is necessary to follow a regulatory process that will evaluate the environmental and health impacts of this crop. The regulatory review process is usually accomplished through a comparison of the biology and composition of the GM cultivar and a non-GM counterpart. This review intends to provide information on non-GM sugarcane biology, genetics, breeding, agronomic management, processing, products and byproducts, as well as the current technologies used to develop GM sugarcane, with the aim of assisting regulators in the decision-making process regarding the commercial release of GM sugarcane cultivars.  相似文献   
10.
Ectodysplasin A (Eda), a member of the tumour necrosis factor superfamily, plays an important role in ectodermal organ development. An EDA mutation underlies the most common of ectodermal dysplasias, that is X‐linked hypohidrotic ectodermal dysplasia (XLHED) in humans. Even though it lacks a developmental function, the role of Eda during the postnatal stage remains elusive. In this study, we found tight junctional proteins ZO‐1 and claudin‐1 expression is largely reduced in epidermal, corneal and lung epithelia in Eda mutant Tabby mice at different postnatal ages. These declines are associated with tail ulceration, corneal pannus formation and lung infection. Furthermore, topical application of recombinant Eda protein markedly mitigated corneal barrier dysfunction. Using cultures of a human corneal epithelial cell line and Tabby mouse skin tissue explants, Eda up‐regulated expression of ZO‐1 and claudin‐1 through activation of the sonic hedgehog signalling pathway. We conclude that EDA gene expression contributes to the maintenance of epithelial barrier function. Such insight may help efforts to identify novel strategies for improving management of XLHED disease manifestations in a clinical setting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号