首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   322篇
  免费   26篇
  348篇
  2023年   7篇
  2022年   6篇
  2021年   16篇
  2020年   9篇
  2019年   3篇
  2018年   3篇
  2017年   8篇
  2016年   14篇
  2015年   18篇
  2014年   11篇
  2013年   31篇
  2012年   22篇
  2011年   30篇
  2010年   29篇
  2009年   11篇
  2008年   12篇
  2007年   16篇
  2006年   11篇
  2005年   9篇
  2004年   7篇
  2003年   11篇
  2002年   6篇
  2001年   6篇
  2000年   2篇
  1999年   4篇
  1998年   6篇
  1997年   1篇
  1996年   3篇
  1995年   5篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   5篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   3篇
  1968年   4篇
  1965年   1篇
  1953年   1篇
排序方式: 共有348条查询结果,搜索用时 15 毫秒
1.
Effects of maternal ethanol consumption were investigated on the rates of protein synthehsis by livers of foetal and neonatal rats both in vivo and in vitro, and on the activities of enzymes involved in protein synthesis and degradation. The rates of general protein synthesis by ribosomes in vitro studied by measuring the incorporation of [14C]leucine into ribosomal protein showed that maternal ethanol consumption resulted in an inhibition of the rates of protein synthesis by both foetal and neonatal livers from the ethanol-fed group. The rates of incorporation of intravenously injected [14C]leucine into hepatic proteins were also significantly lower in the foetal, neonatal and adult livers from the ethanol-fed group. Incubation of adult-rat liver slices with ethanol resulted in an inhibition of the incorporation of [14C]leucine into hepatic proteins; however, this effect was not observed in the foetal liver slices. This effect of externally added ethanol was at least partially prevented by the addition of pyrazole to the adult liver slices. Pyrazole addition to foetal liver slices was without significant effect on the rates of protein synthesis. Cross-mixing experiments showed that the capacity of both hepatic ribosomes and pH5 enzyme fractions to synthesize proteins was decreased in the foetal liver from the ethanol-fed group. Maternal ethanol consumption resulted in a decrease in hepatic total RNA content, RNA/DNA ratio and ribosomal protein content in the foetal liver. Foetal hepatic DNA content was not significantly affected. Ethanol consumption resulted in a significant decrease in proteolytic activity and the activity of tryptophan oxygenase in the foetal, neonatal and adult livers. It is possible that the mechanisms of inhibition of protein synthesis observed here in the foetal liver after maternal ethanol consumption may be responsible for at least some of the changes observed in 'foetal alcohol syndrome'.  相似文献   
2.
Sharma  Himanshu  Kumar  Pankaj  Singh  Abhishek  Aggarwal  Kanika  Roy  Joy  Sharma  Vikas  Rawat  Sandeep 《Molecular biology reports》2020,47(4):2447-2457
Molecular Biology Reports - The genus Rhododendron, known for large impressive flowers is widely distributed throughout the world. Rhododendrons have limited genetic information, despite of...  相似文献   
3.
Abstract

Bryophyte biomass and diversity vary strongly with altitude in the tropics. Low abundance and low species numbers in lowland rain forests are most likely due to reduced diurnal activity times combined with high nocturnal respiration rates at high temperatures. This may exclude many montane species from the warm lowlands. However, an alternative hypothesis explains the observed pattern, namely a limited desiccation tolerance of montane species, precipitation being more concentrated but less frequent in most lowland forests compared to montane cloud forests. To test this hypothesis, we studied the desiccation tolerance of four montane and four lowland bryophyte species. The effects of prolonged drought were quantified with chlorophyll fluorescence (Fv/Fm) and the extent of electrolyte leakage. Both montane and lowland species survived dry periods of ≧80 days, which far exceeds the duration of dry periods in the wet lowland tropics. We can thus exclude intolerance to long dry spells as an explaination for the absence of the tested montane species in the lowlands. We should continue to focus on other mechanisms to explain the altitudinal gradient of bryophyte abundance and diversity in the tropics, in order to understand this pattern, as well as to predict future trends under climatic warming.  相似文献   
4.
Adequate utilization of services is critical to maximize the impact of counselling on infant and young child feeding (IYCF), but little is known about factors affecting utilization. Our study examined supply- and demand-side factors associated with the utilization of IYCF counselling services in Viet Nam. We used survey data from mothers with children <2y (n = 1,008) and health staff (n = 60) from the evaluation of a program that embedded IYCF counseling into the existing government health system. The frequency of never users, one-time users, repeat users, and achievers of the recommended minimum number of visits at health facilities were 45.1%, 13.0%, 28.4% and 13.5%, respectively. Poisson regression showed that demand-generation strategies, especially invitation cards, were the key factors determining one-time use (Prevalence ratio, PR 3.0, 95% CI: 2.2–4.2), repeated use (PR 3.2, 95% CI: 2.4–4.2), and achievement of minimum visits (PR 5.5, 95% CI: 3.6–8.4). Higher maternal education was associated with higher utilization both for one-time and repeated use. Being a farmer, belonging to an ethnic minority, and having a wasted child were associated with greater likelihood of achieving the minimum recommended number of visits, whereas child stunting or illness were not. Distance to health center was a barrier to repeated visits. Among supply-side factors, good counselling skills (PR: 1.3–1.8) was the most important factor associated with any service use, whereas longer employment duration and greater work pressure of health center staff were associated with lower utilization. Population attributable risk estimations showed that an additional 25% of the population would have achieved the minimum number of visits if exposed to three demand-generation strategies, and further increased to 49% if the health staff had good counseling skills and low work pressure. Our study provides evidence that demand-generation strategies are essential to increase utilization of facility-based IYCF counselling services in Viet Nam, and may be relevant for increasing and sustaining use of nutrition services in similar contexts.  相似文献   
5.
6.
7.
Plant genomes contain genetically encoded isoforms of most nucleotide sugar interconversion enzymes. Here we show that Arabidopsis thaliana has five genes encoding functional UDP-D-glucose/UDP-D-galactose 4-epimerase (named UGE1 to UGE5). All A. thaliana UDP-d-glucose 4-epimerase isoforms are dimeric in solution, maximally active in vitro at 30-40 degrees C, and show good activity between pH 7 and pH 9. In vitro, UGE1, -3, and -5 act independently of externally added NAD+, whereas cofactor addition stimulates the activity of UGE2 and is particularly important for UGE4 activity. UGE1 and UGE3 are most efficiently inhibited by UDP. The five isoforms display kcatUDP-Gal values between 23 and 128 s(-1) and KmUDP-Gal values between 0.1 and 0.3 mm. This results in enzymatic efficiencies ranging between 97 and 890 mm(-1) s(-1) for UGE4 = UGE1 < UGE3 < UGE5 < UGE2. The KmUDP-Glc values, derived from the Haldane relationship, were 0.76 mm for UGE1, 0.56 mm for UGE4, and between 0.13 and 0.23 mm for UGE2, -3, and -5. The expression of UGE isoforms is ubiquitous and displays developmental and cell type-dependent variations. UGE1 and -3 expression patterns globally resemble enzymes involved in carbohydrate catabolism, and UGE2, -4, and -5 expression is more related to carbohydrate biosynthesis. UGE1, -2, and -4 are present in the cytoplasm, whereasUGE4 is additionally enriched close to Golgi stacks. All UGE genes tested complement the UGE4rhd1 phenotype, confer increased galactose tolerance in planta, and complement the galactose metabolization deficiency in the Saccharomyces cerevisiae gal10 mutant. We suggest that plant UGE isoforms function in different metabolic situations and that enzymatic properties, gene expression pattern, and subcellular localization contribute to the differentiation of isoform function.  相似文献   
8.
Nanocrystalline SrS phosphors doped with Ce3+ ions at different concentrations (0.5, 1, 1.5 and 2 mol%) are synthesized via the solid‐state diffusion method (SSDM), which is suitable for the large‐scale production of phosphors in industrial applications. The as‐prepared samples are characterized using an X‐ray diffraction (XRD) technique, field emission scanning electron microscopy (FESEM), high‐resolution transmission electron microscopy (HRTEM) and energy‐dispersive X‐ray (EDX) analysis. The optical properties of these phosphors are analyzed using reflectance spectra, photoluminescence spectra and afterglow decay curves. The cubic structure of the SrS phosphor is confirmed by XRD analysis and the crystallite size calculated by Scherer's formula using XRD data shows the nanocrystalline nature of the phosphors. No phase change is observed with increasing concentrations of Ce3+ ions. The surface morphology of the prepared phosphors is determined by FESEM, which shows a sphere‐like structure and good connectivity of the grains. The authenticity of the formation of nanocrystalline phosphors is examined by HRTEM analysis. Elemental compositional information for the prepared phosphors is gathered by EDX analysis. Photoluminescence studies reveal that the emission spectra of the prepared phosphor shows broad band emission centered at 458 and 550 nm due to the transition of electrons from the 5d → 4f energy levels. The afterglow decay characteristics of different as‐synthesized SrS:Ce3+ nanophosphors are conceptually described. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
9.
10.
Green house study was aimed to investigate the effect of seed biopriming with drought tolerant isolates of Trichoderma harzianum, viz. Th 56, 69, 75, 82 and 89 on growth of wheat under drought stress and to explore the mechanism underlying plant water stress resilience in response to Trichoderma inoculation. Measurements of relative water content, osmotic potential, osmotic adjustment, leaf gas exchange, chlorophyll fluorescence and membrane stability index were performed. In addition, analysis of the phenolics, proline, lipid peroxidation and measurements of phenylalanine ammonia‐lyase activity were carried out. Seed biopriming enhanced drought tolerance of wheat as drought induced changes like stomatal conductance, net photosynthesis and chlorophyll fluorescence were delayed. Drought stress from 4 to 13 days of withholding water induced an increase in the concentration of stress induced metabolites in leaves, while Trichoderma colonisation caused decrease in proline, malondialdehyde (MDA) and hydrogen peroxide (H2O2), and an increase in total phenolics. A common factor that negatively affects plants under drought stress conditions is accumulation of toxic reactive oxygen species (ROS), and we tested the hypothesis that seed biopriming reduced damages resulting from accumulation of ROS in stressed plants. The enhanced redox state of colonised plants could be explained by higher l ‐phenylalanine ammonia‐lyase (PAL) activity in leaves after 13 days of drought stress in Trichoderma treated plants. Similar activity was induced in untreated plants in response to drought stress but to a lower extent in comparison to treated plants. Our results support the hypothesis that seed biopriming in wheat with drought tolerant T. harzianum strains increased root vigour besides performing the process of osmoregulation. It ameliorates drought stress by inducing physiological protection in plants against oxidative damage, due to enhanced capacity to scavenge ROS and increased level of PAL, a mechanism that is expected to augment tolerance to abiotic stresses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号