首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1107篇
  免费   52篇
  国内免费   3篇
  1162篇
  2023年   11篇
  2022年   37篇
  2021年   58篇
  2020年   24篇
  2019年   29篇
  2018年   39篇
  2017年   39篇
  2016年   42篇
  2015年   46篇
  2014年   58篇
  2013年   79篇
  2012年   88篇
  2011年   63篇
  2010年   40篇
  2009年   50篇
  2008年   45篇
  2007年   43篇
  2006年   45篇
  2005年   31篇
  2004年   40篇
  2003年   32篇
  2002年   25篇
  2001年   16篇
  2000年   18篇
  1999年   9篇
  1998年   6篇
  1997年   10篇
  1996年   9篇
  1994年   7篇
  1993年   3篇
  1992年   7篇
  1991年   6篇
  1990年   8篇
  1989年   4篇
  1987年   5篇
  1986年   6篇
  1984年   4篇
  1983年   12篇
  1982年   9篇
  1981年   13篇
  1980年   6篇
  1979年   2篇
  1978年   3篇
  1977年   5篇
  1976年   4篇
  1975年   4篇
  1974年   2篇
  1973年   4篇
  1968年   2篇
  1967年   3篇
排序方式: 共有1162条查询结果,搜索用时 15 毫秒
1.
As an extension of our previous work we not only evaluated the relationship between acidosis and lipid peroxidation in rat's kidney homogenate, but also determined for the first time the potential anti-oxidant activity of diphenyl diselenide, diphenyl ditelluride and ebselen at a range of pH values (7.4–5.4). Because of the pH dependency of iron redox cycling, pH and iron need to be well controlled and for the reason we tested a number of pH values (from 7.4 to 5.4) to get a closer idea about the role of iron under various pathological conditions. Acidosis increased rate of lipid peroxidation in the absence Fe (II) in kidney homogenates especially at pH 5.4. This higher extent of lipid peroxidation can be explained by; the mobilized iron which may come from reserves where it is weakly bound. Addition of iron (Fe) chelator desferoxamine (DFO) to reaction medium completely inhibited the peroxidation processes at all studied pH values including acidic values (5.8–5.4). In the presence of Fe (II) acidosis also enhanced detrimental effect of Fe (II) especially at pH (6.4–5.4). Diphenyl diselenide significantly protected lipid peroxidation at all studied pH values, while ebselen offered only a small statistically non-significant protection. The highest anti-oxidant potency was observed for diphenyl ditelluride. These differences in potencies were explained by the mode of action of these compounds using their catalytic anti-oxidant cycles. However, changing the pH of the reaction medium did not alter the anti-oxidant activity of the tested compounds. This study provides evidence for acidosis catalyzed oxidative stress in kidney homogenate and for the first time anti-oxidant potential of diphenyl diselenide and diphenyl ditelluride not only at physiological pH but also at a range of acidic values.  相似文献   
2.

Background

Apolipoprotein E (apoE) is a major carrier of cholesterol and essential for synaptic plasticity. In brain, it’s expressed by many cells but highly expressed by the choroid plexus and the predominant apolipoprotein in cerebrospinal fluid (CSF). The role of apoE in the CSF is unclear. Recently, the glymphatic system was described as a clearance system whereby CSF and ISF (interstitial fluid) is exchanged via the peri-arterial space and convective flow of ISF clearance is mediated by aquaporin 4 (AQP4), a water channel. We reasoned that this system also serves to distribute essential molecules in CSF into brain. The aim was to establish whether apoE in CSF, secreted by the choroid plexus, is distributed into brain, and whether this distribution pattern was altered by sleep deprivation.

Methods

We used fluorescently labeled lipidated apoE isoforms, lenti-apoE3 delivered to the choroid plexus, immunohistochemistry to map apoE brain distribution, immunolabeled cells and proteins in brain, Western blot analysis and ELISA to determine apoE levels and radiolabeled molecules to quantify CSF inflow into brain and brain clearance in mice. Data were statistically analyzed using ANOVA or Student’s t- test.

Results

We show that the glymphatic fluid transporting system contributes to the delivery of choroid plexus/CSF-derived human apoE to neurons. CSF-delivered human apoE entered brain via the perivascular space of penetrating arteries and flows radially around arteries, but not veins, in an isoform specific manner (apoE2?>?apoE3?>?apoE4). Flow of apoE around arteries was facilitated by AQP4, a characteristic feature of the glymphatic system. ApoE3, delivered by lentivirus to the choroid plexus and ependymal layer but not to the parenchymal cells, was present in the CSF, penetrating arteries and neurons. The inflow of CSF, which contains apoE, into brain and its clearance from the interstitium were severely suppressed by sleep deprivation compared to the sleep state.

Conclusions

Thus, choroid plexus/CSF provides an additional source of apoE and the glymphatic fluid transporting system delivers it to brain via the periarterial space. By implication, failure in this essential physiological role of the glymphatic fluid flow and ISF clearance may also contribute to apoE isoform-specific disorders in the long term.
  相似文献   
3.
International Journal of Peptide Research and Therapeutics - Pseudomonas aeruginosa (P. aeruginosa) is a critical healthcare challenge due to its ability to cause persistent infections and the...  相似文献   
4.
5.
Amyloid-beta peptide (Abeta) interacts with the vasculature to influence Abeta levels in the brain and cerebral blood flow, providing a means of amplifying the Abeta-induced cellular stress underlying neuronal dysfunction and dementia. Systemic Abeta infusion and studies in genetically manipulated mice show that Abeta interaction with receptor for advanced glycation end products (RAGE)-bearing cells in the vessel wall results in transport of Abeta across the blood-brain barrier (BBB) and expression of proinflammatory cytokines and endothelin-1 (ET-1), the latter mediating Abeta-induced vasoconstriction. Inhibition of RAGE-ligand interaction suppresses accumulation of Abeta in brain parenchyma in a mouse transgenic model. These findings suggest that vascular RAGE is a target for inhibiting pathogenic consequences of Abeta-vascular interactions, including development of cerebral amyloidosis.  相似文献   
6.
We have developed a novel technology that makes it possible to detect simple nucleotide polymorphisms directly within a sample of total genomic DNA. It allows, in a single Southern blot experiment, the determination of sequence identity of genomic regions with a combined length of hundreds of kilobases. This technology does not require PCR amplification of the target DNA regions, but exploits preparative size-fractionation of restriction-digested genomic DNA and a newly discovered property of the mismatch-specific endonuclease CEL I to cleave heteroduplex DNA with a very high specificity and sensitivity. We have used this technique to detect various simple mutations directly in the genomic DNA of isogenic pairs of recombinant Pseudomonas aeruginosa, Escherichia coli and Salmonella isolates. Also, by using a cosmid DNA library and genomic fractions as hybridization probes, we have compared total genomic DNA of two clinical P.aeruginosa clones isolated from the same patient, but exhibiting divergent phenotypes. The mutation scan correctly detected a GA insertion in the quorum-sensing regulator gene rhlR and, in addition, identified a novel intragenomic polymorphism in rrn operons, indicating very high stability of the bacterial genomes under natural non-mutator conditions.  相似文献   
7.
8.
Novel cyclization of 4-(substituted-phenylsulfonamido)butanoic acids to their corresponding 1-[(substituted-phenyl)sulfonyl]pyrrolidin-2-ones was successfully achieved by using polyphosphate ester (PPE). The reaction time was considerably reduced with corresponding increase in the yields, when polyphosphate ester (PPE) was used in combination with 4-(N,N-dimethylamino)pyridine (DMAP). All the synthesized compounds were screened for their antimicrobial activity. Minimum Inhibitory Concentration (MIC) values of synthesized compounds were also determined, and were found to be in the range of 0.09-1.0 mg.  相似文献   
9.
10.
Watermelon production is threatened by fusarium wilt caused by Fusarium oxysporum f.sp. niveum (FON) in continuous cultivation system. Some elements, mainly allelochemicals, released from living roots or decayed plants might be associated with the disease. The purpose of this work was to evaluate the possible impact of coumarin, one kind of watermelon allelochemical, on FON. Furthermore, possible new mechanisms might be investigated during the ecological interactions of plant-microbe. Results showed that coumarin strongly inhibited growth of FON leading to a decrease in its biomass, dry weight of mycelia of FON in a liquid culture. The dry weight was decreased by 62.9% compared with control. The hyphal growth of FON on plates was stopped at high (>400 mg l−1) concentrations of coumarin. At 320 mg l−1, sporulation and enzyme activities of FON were also severely suppressed by coumarin. The yield of conidia, and the activities of proteinase, cellulase, and amylase were reduced by 98.9%, 79.7%, 29.8% and 15.9% respectively. However, conidial germination and mycotoxin (MT) production of FON were greatly stimulated, being increased by 55.7% and 14.9 fold at 320 mg l−1 respectively. We conclude that coumarin acted as an allelochemical substance to inhibit growth and pathogenic enzyme activities of FON but to stimulate mycotoxin production and conidial germination. It was suggested that coumarin acted as a signal transduction element bridging plant and pathogen in the process of plant-microbe interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号