首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   214篇
  免费   12篇
  国内免费   1篇
  227篇
  2022年   4篇
  2021年   6篇
  2020年   3篇
  2019年   2篇
  2017年   5篇
  2016年   6篇
  2015年   4篇
  2014年   9篇
  2013年   11篇
  2012年   16篇
  2011年   8篇
  2010年   14篇
  2009年   9篇
  2008年   12篇
  2007年   4篇
  2006年   5篇
  2005年   6篇
  2004年   5篇
  2003年   5篇
  2002年   2篇
  2001年   5篇
  2000年   7篇
  1999年   10篇
  1998年   10篇
  1997年   8篇
  1995年   4篇
  1994年   2篇
  1990年   2篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1983年   1篇
  1982年   3篇
  1981年   4篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1967年   2篇
  1963年   1篇
  1959年   1篇
  1954年   1篇
  1950年   1篇
  1933年   1篇
  1924年   1篇
  1923年   1篇
排序方式: 共有227条查询结果,搜索用时 15 毫秒
1.
2.
The vitelline coat (VC) surrounding coelomic eggs of the frog, Rana japonica , comprises bundles of filaments running both parallel and perpendicular to the egg surface. The coat gives little or no staining reaction with PA-CrA-Silver methenamine. In contrast, in the VC of uterine eggs the filament bundles are less conspicuous. and the interstices between the filament bundles stain strongly for carbohydrate. This alteration occurs during passage of the eggs down the first 1/20 th of the oviduct, the pars recta. The epithelium of the p. recta contains secretory cells, which contain electron-dense granules distinct from those in the jelly-secreting cells in more caudal portions of the oviduct. Treatment of coelomic eggs with an extract of p. recta followed by exposure to a sperm suspension resulted in marked swelling and softening of the VC. These results indicate that the contents of the granules secreted from the epithelial cells in the p. recta are deposited in the VC to increase its susceptibility to a fertilizing sperm.  相似文献   
3.
Hormonal Regulation of Pedicel Abscission in Begonia Flower Buds   总被引:1,自引:0,他引:1  
In order to analyse the hormonal regulation of flower bud shedding in Begonia, levels of indoleacetic acid (IAA), abscisic acid (ABA) and ethylene were determined in buds and pedicels. The translocation and metabolism of 14C-labeled IAA in pedicel segments were also studied. In a monoecious Begonia fuchsioides hybrid, abscising male flower buds contain about 1% of the IAA present in non-abscising female flowers. In a male Begonia davisii hybrid, the seasonal variation in bud drop coincides with changes in the IAA content of the buds, while also the release of IAA from the bud to the pedicel is hampered. Abscission zones of these pedicels always contain abscission promoting ethylene concentrations. The tissue is prevented from responding with abscission by IAA from the flower buds. The buds also contain ABA but without influencing abscission considerably. Pretreatment with ethylene or ABA does not affect IAA transport in pedicel segments. The rate of this transport is 4–6 mm × h–1:; the capacity increases with the transverse area. In young segments, IAA is decarboxylated and also otherwise metabolized.  相似文献   
4.
The topology of metabolic networks is recognisably modular with modules weakly connected apart from sharing a pool of currency metabolites. Here, we defined modules as sets of reversible reactions isolated from the rest of metabolism by irreversible reactions except for the exchange of currency metabolites. Our approach identifies topologically independent modules under specific conditions associated with different metabolic functions. As case studies, the E.coli iJO1366 and Human Recon 2.2 genome-scale metabolic models were split in 103 and 321 modules respectively, displaying significant correlation patterns in expression data. Finally, we addressed a fundamental question about the metabolic flexibility conferred by reversible reactions: “Of all Directed Topologies (DTs) defined by fixing directions to all reversible reactions, how many are capable of carrying flux through all reactions?”. Enumeration of the DTs for iJO1366 model was performed using an efficient depth-first search algorithm, rejecting infeasible DTs based on mass-imbalanced and loopy flux patterns. We found the direction of 79% of reversible reactions must be defined before all directions in the network can be fixed, granting a high degree of flexibility.  相似文献   
5.

Background  

The quantitative analysis of metabolic fluxes, i.e., in vivo activities of intracellular enzymes and pathways, provides key information on biological systems in systems biology and metabolic engineering. It is based on a comprehensive approach combining (i) tracer cultivation on 13C substrates, (ii) 13C labelling analysis by mass spectrometry and (iii) mathematical modelling for experimental design, data processing, flux calculation and statistics. Whereas the cultivation and the analytical part is fairly advanced, a lack of appropriate modelling software solutions for all modelling aspects in flux studies is limiting the application of metabolic flux analysis.  相似文献   
6.
Tissue engineering involves ex vivo seeding of anchorage-dependent mammalian cells onto scaffolds, or transplanting cells in vivo. The cell expansion currently requires repeated cell detachment from solid substrata by enzymatic, chemical or mechanical means. The report here presents a high yield three-dimensional culture and harvest system circumventing the conventional detachment requirements. Cells mixed with dilute cationic collagen were microencapsulated within an ultra-thin shell of synthetic polymers. The cationic collagen could rapidly form a conformal layer of collagen fibers around cells to support cell proliferation and functions. The collagen could be readily removed from cells with a buffer rinse after harvesting from the fragile microcapsules. The cells harvested from this system demonstrate improved attachment, morphology and functions over conventionally cultured cells, upon binding to ligand-conjugated polymer surfaces. The harvested cells can be re-encapsulated and allowed to proliferate again, or used immediately in applications.  相似文献   
7.
Sargassum is a cosmopolitan brown algal genus spanning the three ocean basins of the Atlantic, Pacific and Indian Oceans, inhabiting temperate, subtropical and tropical habitats. Sargassum has been postulated to have originated in the Oligocene epoch approximately 30 mya according to a broad phylogenetic analysis of brown macroalgae, but its diversification to become one of the most widespread and speciose macroalgal genera remains unclear. Here, we present a Bayesian molecular clock study, which analyzed data from the order Fucales of the brown algal crown radiation (BACR) group to reconstruct a time-calibrated phylogeny of the Sargassum clade. Our phylogeny included a total of 120 taxa with 99 Sargassum species sampled for three molecular markers – ITS-2, cox3 and rbcLS – calibrated with an unambiguous Sargassaceae fossil from between the lower and middle Miocene. The analysis revealed a much later origin of Sargassum than expected at about 6.7 mya, with the genus diversifying since approximately 4.3 mya. Current geographic distributions of Sargassum species were then analyzed in conjunction with the time-calibrated phylogeny using the dispersal-extinction-cladogenesis (DEC) model to estimate ancestral ranges of clades in the genus. Results strongly support origination of Sargassum in the Central Indo-Pacific (CIP) region with subsequent independent dispersal events into other marine realms. The longer history of diversification in the ancestral CIP range could explain the much greater diversity there relative to other marine areas today. Analyses of these dynamic processes, when fine-tuned to a higher spatial resolution, enable the identification of evolutionary hotspots and provide insights into long-term dispersal patterns.  相似文献   
8.
著: 《生物信息学》2019,26(5):8-12
随着全球建造业向数字化全面转型,建筑信息模型(BIM)的教学将是未来几年风景园林设计与实施的重要主题。介绍了风景园林专业BIM的教学方法和数字化竖向设计及其应用在BIM场地设计项目中的重要性。数字化竖向设计是实现BIM的途径。风景园林教育必须在其教学中讲解BIM建模方法和过程。  相似文献   
9.
10.
ON THE EARLY GROWTH RATE OF THE INDIVIDUAL FUNGUS HYPHA   总被引:1,自引:0,他引:1  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号