首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   5篇
  23篇
  2018年   1篇
  2017年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2001年   1篇
  1998年   3篇
  1997年   1篇
  1994年   1篇
  1986年   1篇
  1982年   1篇
  1980年   2篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.

Background

Protein translocation across the membrane of the Endoplasmic Reticulum (ER) is the first step in the biogenesis of secretory and membrane proteins. Proteins enter the ER by the Sec61 translocon, a proteinaceous channel composed of three subunits, α, β and γ. While it is known that Sec61α forms the actual channel, the function of the other two subunits remains to be characterized.

Results

In the present study we have investigated the function of Sec61β in Drosophila melanogaster. We describe its role in the plasma membrane traffic of Gurken, the ligand for the Epidermal Growth Factor (EGF) receptor in the oocyte. Germline clones of the mutant allele of Sec61β show normal translocation of Gurken into the ER and transport to the Golgi complex, but further traffic to the plasma membrane is impeded. The defect in plasma membrane traffic due to absence of Sec61β is specific for Gurken and is not due to a general trafficking defect.

Conclusion

Based on our study we conclude that Sec61β, which is part of the ER protein translocation channel affects a post-ER step during Gurken trafficking to the plasma membrane. We propose an additional role of Sec61β beyond protein translocation into the ER.  相似文献   
2.
3.
The design and synthesis of a series of C28 amine-based betulinic acid derivatives as HIV-1 maturation inhibitors is described. This series represents a continuation of efforts following on from previous studies of C-3 benzoic acid-substituted betulinic acid derivatives as HIV-1 maturation inhibitors (MIs) that were explored in the context of C-28 amide substituents. Compared to the C-28 amide series, the C-28 amine derivatives exhibited further improvements in HIV-1 inhibitory activity toward polymorphisms in the Gag polyprotein as well as improved activity in the presence of human serum. However, plasma exposure of basic amines following oral administration to rats was generally low, leading to a focus on moderating the basicity of the amine moiety distal from the triterpene core. The thiomorpholine dioxide (TMD) 20 emerged from this study as a compound with the optimal antiviral activity and an acceptable pharmacokinetic profile in the C-28 amine series. Compared to the C-28 amide 3, 20 offers a 2- to 4-fold improvement in potency towards the screening viruses, exhibits low shifts in the EC50 values toward the V370A and ΔV370 viruses in the presence of human serum or human serum albumin, and demonstrates improved potency towards the polymorphic T371A and V362I virus variants.  相似文献   
4.
5.
We report the nucleotide sequence of a cloned cDNA, pMTS-3, that contains a 1-kb insert corresponding to mouse thymidylate synthase (E.C. 2.1.1.45). The open reading frame of 921 nucleotides from the first AUG to the termination codon specifies a protein with a molecular mass of 34,962 daltons. The predicted amino acid sequence is 90% identical with that of the human enzyme. The mouse sequence also has an extremely high degree of similarity (as much as 55% identity) with prokaryotic thymidylate synthase sequences, indicating that thymidylate synthase is among the most highly conserved proteins studied to date. The similarity is especially pronounced (as much as 80% identity) in the 44-amino-acid region encompassing the binding site for deoxyuridylic acid. The cDNA sequence also suggests that mouse thymidylate synthase mRNA lacks a 3' untranslated region, since the termination codon, UAA, is followed immediately by a poly(A) segment.   相似文献   
6.
Mammalian enabled (Mena) of the Drosophila enabled/vasodilator-stimulated phosphoprotein gene family is a cytoskeletal protein implicated in actin regulation and cell motility. Cardiac Mena expression is enriched in intercalated discs (ICD), the critical intercellular communication nexus between adjacent muscle cells. We previously identified Mena gene expression to be a key predictor of human and murine heart failure (HF). To determine the in vivo function of Mena in the heart, we assessed Mena protein expression in multiple HF models and characterized the effects of genetic Mena deletion on cardiac structure and function. Immunoblot analysis revealed significant upregulation of Mena protein expression in left ventricle tissue from patients with end-stage HF, calsequestrin-overexpressing mice, and isoproterenol-infused mice. Characterization of the baseline cardiac function of adult Mena knockout mice (Mena(-/-)) via echocardiography demonstrated persistent cardiac dysfunction, including a significant reduction in percent fractional shortening compared with wild-type littermates. Electrocardiogram PR and QRS intervals were significantly prolonged in Mena(-/-) mice, manifested by slowed conduction on optical mapping studies. Ultrastructural analysis of Mena(-/-) hearts revealed disrupted organization and widening of ICD structures, mislocalization of the gap junction protein connexin 43 (Cx43) to the lateral borders of cardiomyoycytes, and increased Cx43 expression. Furthermore, the expression of vinculin (an adherens junction protein) was significantly reduced in Mena(-/-) mice. We report for the first time that genetic ablation of Mena results in cardiac dysfunction, highlighted by diminished contractile performance, disrupted ICD structure, and slowed electrical conduction.  相似文献   
7.
Molecular evolution of a multigene family in group A streptococci   总被引:15,自引:0,他引:15  
The emm genes are members of a gene family in group A streptococci (GAS) that encode for antiphagocytic cell-surface proteins and/or immunoglobulin-binding proteins. Previously sequenced genes in this family have been named "emm," "fcrA," "enn," "arp," "protH," and "mrp"; herein they will be referred to as the "emm gene family." The genes in the emm family are located in a cluster occupying 3-6 kb between the genes mry and scpA on the chromosome of Streptococcus pyogenes. Most GAS strains contain one to three tandemly arranged copies of emm-family genes in the cluster, but the alleles within the cluster vary among different strains. Phylogenetic analysis of the conserved sequences at the 3' end of these genes differentiates all known members of this family into four evolutionarily distinct emm subfamilies. As a starting point to analyze how the different subfamilies are related evolutionarily, the structure of the emm chromosomal region was mapped in a number of diverse GAS strains by using subfamily-specific primers in the polymerase chain reaction. Nine distinct chromosomal patterns of the genes in the emm gene cluster were found. These nine chromosomal patterns support a model for the evolution of the emm gene family in which gene duplication followed by sequence divergence resulted in the generation of four major-gene subfamilies in this locus.   相似文献   
8.
In order to examine the widely held hypothesis that the reticulum of proteins which covers the cytoplamsic surface of the human erythrocyte membrane controls cell stability and shape, we have assessed some of its properties. The reticulum, freed of the bilayer by extraction with Triton X-100, was found to be mechanically stable at physiological ionic strength but physically unstable at low ionic strength. The reticulum broke down after a characteristic lag period which decreased 500-fold between 0 degrees and 37 degrees C. The release of polypeptide band 4.1 from the reticulum preceded that of spectrin and actin, suggesting that band 4.1 might stabilize the ensemble but is not essential to its integrity. The time-course of breakdown was similar for ghosts, the reticulum inside of ghosts, and the isolated reticulum. However, at very low ionic strength, the reticulum was less stable within the ghost than when free; at higher ionic strength, the reverse was true. Over a wide range of conditions the membrane broke down to vesicles just as the reticulum disintegrated, presumably because the bilayer was mechanically stabilized by this network. The volume of both ghosts and naked reticula varied inversely and reversibly with ionic strength. The volume of the naked reticulum varied far more widely than the ghost, suggesting that its deformation was normally limited by the less extensible bilayer. The contour of the isolated reticulum was discoid and often dimpled or indented, as visualized in the fluorescence microscope after labeling of the ghosts with fluoroscein isothiocyanate. Reticula derived from ghosts which had lost the ability to crenate in isotonic saline were shriveled, even though the bilayer was smooth and expanded. Conversly, ghosts crenated by dinitrophenol yielded smooth, expanded reticula. We conclude that the reticulum is a durable, flexible, and elastic network which assumes and stabilizes the contour of the membrane but is not responsible for its crenation.  相似文献   
9.

Background  

Bacteria may compete with yeast for nutrients during bioethanol production process, potentially causing economic losses. This is the first study aiming at the quantification and identification of Lactic Acid Bacteria (LAB) present in the bioethanol industrial processes in different distilleries of Brazil.  相似文献   
10.
Numerous genetically engineered animal models of heart failure (HF) exhibit multiple characteristics of human HF, including aberrant beta-adrenergic signaling. Several of these HF models can be rescued by cardiac-targeted expression of the Gbetagamma inhibitory carboxy-terminus of the beta-adrenergic receptor kinase (betaARKct). We recently reported microarray analysis of gene expression in multiple animal models of HF and their betaARKct rescue, where we identified gene expression patterns distinct and predictive of HF and rescue. We have further investigated the muscle LIM protein knockout model of HF (MLP-/-), which closely parallels human dilated cardiomyopathy disease progression and aberrant beta-adrenergic signaling, and their betaARKct rescue. A group of known and novel genes was identified and validated by quantitative real-time PCR whose expression levels predicted phenotype in both the larger HF group and in the MLP-/- subset. One of these novel genes is herein identified as Nogo, a protein widely studied in the nervous system, where it plays a role in regeneration. Nogo expression is altered in HF and normalized with rescue, in an isoform-specific manner, using left ventricular tissue harvested from both animal and human subjects. To investigate cell type-specific expression of Nogo in the heart, immunofluorescence and confocal microscopy were utilized. Nogo expression appears to be most clearly associated with cardiac fibroblasts. To our knowledge, this is the first report to demonstrate the relationship between Nogo expression and HF, including cell-type specificity, in both mouse and human HF and phenotypic rescue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号