首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  1篇
  2021年   1篇
排序方式: 共有1条查询结果,搜索用时 4 毫秒
1
1.

To encapsulate piperine (Pip), as a poor water-soluble bioactive compound, zein-sodium caseinate-xanthan gum (Z-SG-XG) nanocomplex was prepared as a colloidal delivery system. The effect of different parameters involved in complexation process, including concentration of proteins, polysaccharide, and Pip on the encapsulation efficiency of Pip, particle size and stability of the nanocomplexes was investigated. Powders obtained by freeze-drying of the colloidal solution had relatively uniform particles compared to those obtained from conventional drying system and showed well redispersibility in water. At the optimal condition, a stable and homogeneous nanocomplex with a mean particle size of 145.9 ± 2.7 nm, PDI of 0.27 ± 0.01, and ζ-potential of −39.7 ± 1.3 mV was obtained. The antioxidant activity of Pip was significantly improved by encapsulation into the Z-SC-XG nanocomplex. Also, the in vitro release of Pip from the synthesized nanocomplexes in phosphate-buffer saline (PBS) solution and simulated gastrointestinal fluids (SGIF) was investigated and the release kinetic was studied as well. The Pip/Z-SG-XG nanocomplex showed a slower release in SGIF compared to the free Pip and nanoparticles without XG and SC, while its antioxidant activity was remarkable. Results suggested a possible utilization of Z-SC-XG nanocomplex for improving the water solubility, bioavailability and storage stability of Pip.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号