首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   17篇
  212篇
  2021年   4篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   14篇
  2014年   11篇
  2013年   8篇
  2012年   11篇
  2011年   15篇
  2010年   12篇
  2009年   4篇
  2008年   17篇
  2007年   8篇
  2006年   17篇
  2005年   12篇
  2004年   8篇
  2003年   7篇
  2002年   11篇
  2001年   7篇
  2000年   3篇
  1999年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1991年   1篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1978年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1972年   2篇
  1970年   1篇
  1969年   3篇
  1968年   1篇
排序方式: 共有212条查询结果,搜索用时 15 毫秒
1.
Reconstructions of the human-African great ape phylogeny by using mitochondrial DNA (mtDNA) have been subject to considerable debate. One confounding factor may be the lack of data on intraspecific variation. To test this hypothesis, we examined the effect of intraspecific mtDNA diversity on the phylogenetic reconstruction of another Plio- Pleistocene radiation of higher primates, the fascicularis group of macaque (Macaca) monkey species. Fifteen endonucleases were used to identify 10 haplotypes of 40-47 restriction sites in M. mulatta, which were compared with similar data for the other members of this species group. Interpopulational, intraspecific mtDNA diversity was large (0.5%- 4.5%), and estimates of divergence time and branching order incorporating this variation were substantially different from those based on single representatives of each species. We conclude that intraspecific mtDNA diversity is substantial in at least some primate species. Consequently, without prior information on the extent of genetic diversity within a particular species, intraspecific variation must be assessed and accounted for when reconstructing primate phylogenies. Further, we question the reliability of hominoid mtDNA phylogenies, based as they are on one or a few representatives of each species, in an already depauperate superfamily of primates.   相似文献   
2.
3.
Molecular and Cellular Biochemistry - The aim of our study was to investigate the effects of one-month consumption of polyphenol-rich standardized Aronia melanocarpa extract (SAE) on redox status...  相似文献   
4.
5.
Accurate chromosome segregation during mitosis and meiosis is crucial for cellular and organismal viability. Kinetochores connect chromosomes with spindle microtubules and are essential for chromosome segregation. These large protein scaffolds emerge from the centromere, a specialized region of the chromosome enriched with the histone H3 variant CENP-A. In most eukaryotes, the kinetochore core consists of the centromere-proximal constitutive centromere-associated network (CCAN), which binds CENP-A and contains 16 subunits, and of the centromere-distal Knl1 complex, Mis12 complex, Ndc80 complex (KMN) network, which binds microtubules and contains 10 subunits. In the fruitfly, Drosophila melanogaster, the kinetochore underwent remarkable simplifications. All CCAN subunits, with the exception of centromeric protein C (CENP-C), and two KMN subunits, Dsn1 and Zwint, cannot be identified in this organism. In addition, two paralogues of the KMN subunit Nnf1 (Nnf1a and Nnf1b) are present. Finally, the Spc105R subunit, homologous to human Knl1/CASC5, underwent considerable sequence changes in comparison with other organisms. We combined biochemical reconstitution with biophysical and structural methods to investigate how these changes reflect on the organization of the Drosophila KMN network. We demonstrate that the Nnf1a and Nnf1b paralogues are subunits of distinct complexes, both of which interact directly with Spc105R and with CENP-C, for the latter of which we identify a binding site on the Mis12 subunit. Our studies shed light on the structural and functional organization of a highly divergent kinetochore particle.  相似文献   
6.
7.

Background

Older patients are at an increased risk of developing adverse drug reactions (ADR). Of particular concern are the oldest old, which constitute an increasingly growing population. Having a validated clinical tool to identify those older patients at risk of developing an ADR during hospital stay would enable healthcare staff to put measures in place to reduce the risk of such an event developing. The current study aimed to (1) develop and (2) validate an ADR risk prediction model.

Methods

We used a combination of univariate analysis and multivariate binary logistic regression to identify clinical risk factors for developing an ADR in a population of older people from a UK teaching hospital. The final ADR risk model was then validated in a European population (European dataset).

Results

Six-hundred-ninety patients (median age 85 years) were enrolled in the development stage of the study. Ninety-five reports of ADR were confirmed by independent review in these patients. Five clinical variables were identified through multivariate analysis and included in our final model; each variable was attributed a score of 1. Internal validation produced an AUROC of 0.74, a sensitivity of 80%, and specificity of 55%. During the external validation stage the AUROC was 0.73, with sensitivity and specificity values of 84% and 43% respectively.

Conclusions

We have developed and successfully validated a simple model to use ADR risk score in a population of patients with a median age of 85, i.e. the oldest old. The model is based on 5 clinical variables (≥8 drugs, hyperlipidaemia, raised white cell count, use of anti-diabetic agents, length of stay ≥12 days), some of which have not been previously reported.  相似文献   
8.
In this study we investigated the association of the interleukin-1 receptor antagonist gene variable number tandem repeat (IL1RN VNTR) polymorphism and of the inhibitor of kappa B-like protein (IKBL) gene polymorphism with myocardial infarction (MI) in a group of patients with type 2 diabetes. The IL1RN VNTR and the IKBL+ 738T > C gene polymorphisms were tested in 374 Caucasians: 151 cases with MI and 223 subjects with no history of coronary artery disease. The IL1RN VNTR polymorphism was not a risk factor for MI in Caucasians with type 2 diabetes (genotype 22 vs. the rest: odds ratio (OR) 1.6; 95% confidence interval (CI) = 0.8-3.5; p = 0.2). We also failed to demonstrate that IKBL+ 738T > C gene polymorphism was associated with MI in patients with type 2 diabetes (OR = 0.9; 95% CI = 0.3-2.6; p = 0.9). We provide evidence that the IL1RN VNTR and the IKBL + 738T > C gene polymorphisms are not risk factors for MI in Caucasians with type 2 diabetes.  相似文献   
9.
10.
We examined the structural requirements for cell surface expression, signaling, and human immunodeficiency virus co-receptor activity for the chemokine receptor, CCR5. Serial C-terminal truncation of CCR5 resulted in progressive loss of cell surface expression; mutants truncated at the 317th position and shorter were not detected at the cell surface. Alanine substitution of basic residues in the membrane-proximal domain (residues 314-322) in the context of a full-length C-tail resulted in severe reduction in surface expression. C-terminal truncation that excised the three cysteines in this domain reduced surface expression, but further truncation of upstream basic residue(s) abolished surface expression. Substituting the carboxyl-terminal domain of CXCR4 for that of CCR5 failed to rectify the trafficking defect of the tailless CCR5. In contrast, tailless CXCR4 or a CXCR4 chimera that exchanged the native cytoplasmic domain for that of wild type CCR5 was expressed at the cell surface. Deletion mutants that expressed at the cell surface responded to chemokine stimulation and mediated human immunodeficiency virus entry. Substitution of all serine and threonine residues in the C-terminal tail of CCR5 abolished chemokine-mediated receptor phosphorylation but preserved downstream signaling (Ca(2+) flux), while substitutions of tyrosine residues in the C-tail affected neither phenotype. CCR5 mutants that failed to traffic to the plasma membrane did not exhibit obvious changes in metabolic turnover and were retained in the Golgi or pre-Golgi compartments(s). Thus, the basic domain (-KHIAKRF-) and the cysteine cluster (-CKCC-) in the C-terminal tail of CCR5 function cooperatively for optimal surface expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号