首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   4篇
  73篇
  2019年   1篇
  2015年   2篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   4篇
  2006年   8篇
  2005年   5篇
  2004年   8篇
  2003年   3篇
  2002年   2篇
  2001年   5篇
  2000年   3篇
  1999年   6篇
  1997年   2篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1986年   2篇
  1970年   1篇
  1966年   1篇
  1956年   1篇
  1921年   1篇
排序方式: 共有73条查询结果,搜索用时 15 毫秒
1.
A technique for differentiating high-resolution NMR signals from different regions of small objects is outlined and some initial results on model systems are given. This method uses inorganic paramagnetic or diamagnetic ions to create magnetic field gradients at phase boundaries.  相似文献   
2.
3.
Urinary glycoproteins are important inhibitors of calcium oxalate crystallization and adhesion of crystals to renal cells, both of which are key mechanisms in kidney stone formation. This has been attributed to glycosylation of the proteins. In South Africa, the black population rarely form stones (incidence < 1%) compared with the white population (incidence 12-15%). A previous study involving urinary prothrombin fragment 1 from both populations demonstrated superior inhibitory activity associated with the protein from the black group. In the present study, we compared N-linked and O-linked oligosaccharides released from urinary prothrombin fragment 1 isolated from the urine of healthy and stone-forming subjects in both populations to elucidate the relationship between glycosylation and calcium oxalate stone pathogenesis. The O-glycans of both control groups and the N-glycans of the black control samples were significantly more sialylated than those of the white stone-formers. This demonstrates a possible association between low-percentage sialylation and kidney stone disease and provides a potential diagnostic method for a predisposition to kidney stones that could lead to the implementation of a preventative regimen. These results indicate that sialylated glycoforms of urinary prothrombin fragment 1 afford protection against calcium oxalate stone formation, possibly by coating the surface of calcium oxalate crystals. This provides a rationale for the established roles of urinary prothrombin fragment 1, namely reducing the potential for crystal aggregation and inhibiting crystal-cell adhesion by masking the interaction of the calcium ions on the crystal surface with the renal cell surface along the nephron.  相似文献   
4.
Gelatinase B/matrix metalloproteinase-9 (MMP-9), a key regulator and effector of immunity, contains a C-terminal hemopexin domain preceded by a unique linker sequence of approximately 64 amino acid residues. This linker sequence is demonstrated to be an extensively O-glycosylated (OG) domain with a compact three-dimensional structure. The OG and hemopexin domains have no influence on the cleavage efficiency of MMP-9 substrates. In contrast, the hemopexin domain contains a binding site for the cargo receptor low density lipoprotein receptor-related protein-1 (LRP-1). Furthermore, megalin/LRP-2 is identified as a new functional receptor for the hemopexin domain of MMP-9, able to mediate the endocytosis and catabolism of the enzyme. The OG domain is required to correctly orient the hemopexin domain for inhibition by TIMP-1 and internalization by LRP-1 and megalin. Therefore, the OG and hemopexin domains down-regulate the bioavailability of active MMP-9 and the interactions with the cargo receptors are proposed to be the original function of hemopexin domains in MMPs.  相似文献   
5.
Studies of mucins suggest that the structural effects of O-glycans are restricted to steric interactions between peptide-linked GalNAc residues and adjacent polypeptide residues. It has been proposed, however, that differential O-glycan sialylation alters the structure of the stalk-like region of the T cell co-receptor, CD8, and that this, in turn, modulates ligand binding (Daniels, M. A., Devine, L., Miller, J. D., Moser, J. M., Lukacher, A. E., Altman, J. D., Kavathas, P., Hogquist, K. A., and Jameson, S. C. (2001) Immunity 15, 1051-1061; Moody, A. M., Chui, D., Reche, P. A., Priatel, J. J., Marth, J. D., and Reinherz, E. L. (2001) Cell 107, 501-512). We characterize the glycosylation of soluble, chimeric forms of the alphaalpha- and alphabeta-isoforms of murine CD8 containing the O-glycosylated stalk of rat CD8alphaalpha, and we show that the stalk O-glycans are differentially sialylated in CHO K1 versus Lec3.2.8.1 cells (82 versus approximately 6%, respectively). Sedimentation analysis indicates that the Perrin functions, Pexp, which reflect overall molecular shape, are very similar (1.61 versus 1.54), whereas the sedimentation coefficients (s) of the CHO K1- and Lec3.2.8.1-derived proteins differ considerably (3.73 versus 3.13 S). The hydrodynamic properties of molecular models also strongly imply that the sialylated and non-sialylated forms of the chimera have parallel, equally highly extended stalks ( approximately 2.6 A/residue). Our analysis indicates that, as in the case of mucins, the overall structure of O-glycosylated stalk-like peptides is sialylation-independent and that the functional effects of differential CD8 O-glycan sialylation need careful interpretation.  相似文献   
6.
The HIV envelope has evolved a dense array of immunologically "self" carbohydrates that efficiently protect the virus from antibody recognition. Nonetheless, one broadly neutralising antibody, IgG1 2G12, has been shown to recognise a cluster of oligomannose glycans on the HIV-1 surface antigen gp120. Thus the self carbohydrates of HIV are now regarded as potential targets for viral neutralisation and vaccine design. Here, we show that chemical inhibition of mammalian glycoprotein synthesis, with the plant alkaloid kifunensine, creates multiple HIV (2G12) epitopes on the surface of previously non-antigenic self proteins and cells, including HIV gp120. This formally demonstrates the structural basis for self/non-self discrimination between viral and host glycans, by a neutralising antibody. Moreover, this study provides an alternative protein engineering approach to the design of a carbohydrate vaccine for HIV-1 by chemical synthesis.  相似文献   
7.
8.
We have generated a database of 639 glycosidic linkage structures by an exhaustive survey of the available crystallographic data for isolated oligosaccharides, glycoproteins, and glycan-binding proteins. For isolated oligosaccharides there is relatively little crystallographic data available. A much larger number of glycoprotein and glycan-binding protein structures have now been solved in which two or more linked monosaccharides can be resolved. In the majority of these cases, only a few residues can be seen. Using the 639 glycosidic linkage structures, we have identified one or more distinct conformers for all the linkages. The O5-C1-O-C(x)' torsion angles for all these distinct conformers appear to be determined chiefly by the exo-anomeric effect. The Manalpha1-6Man linkage appears to be less restrained than the others, showing a wide degree of dispersion outside the ranges of the defined conformers. The identification of distinct conformers for glyco-sidic linkages allows "average" glycan structures to be modeled and also allows the easy identification of distorted glycosidic linkages. Such an analysis shows that the interactions between IgG Fc and its own N-linked glycan result in severe distortion of the terminal Galbeta1-4GlcNAc linkage only, indicating the strong interactions that must be present between the Gal residue and the protein surface. The applicability of this crystallographic based analysis to glycan structures in solution is discussed. This database of linkagestructures should be a very useful reference tool in three-dimensional structure determinations.  相似文献   
9.
Nuclear magnetic resonance spectra of acylphosphatase were searched for signs of beta-structure, i.e. characteristic nuclear Overhauser enhancement patterns displayed in the two-dimensional spectra, typical chemical shifts, coupling constants and slow 2H-H exchange. The results provided identification of the main-chain resonances of amino acid residues involved in the beta-structure. The full sequential assignment of this region was gained by identification of some amino acid spin systems and their alignment with the primary sequence. The assignment of the side-chains was virtually completed subsequently and a list produced of nuclear magnetic resonance (n.m.r.) constraints derived from the spectra. The beta-structure consists of a beta-sheet with four antiparallel chains, one attached parallel chain, three tight turns and a beta-bulge. The conformation of the beta-sheet was determined by distance geometry calculation using the n.m.r. constraints (174 intraresidual, 107 sequential and 226 long-range distances, 32 torsion angles, phi, and 28 hydrogen bonds) as input. Observation of some interactions between the sheet and previously identified alpha-helical regions made it possible to give an outline of the three-dimensional structure of the enzyme.  相似文献   
10.
We recently reported statistical analysis of structural data on glycosidic linkages. Here we extend this analysis to the glycan-protein linkage, and the peptide primary, secondary, and tertiary structures around N-glycosylation sites. We surveyed 506 glycoproteins in the Protein Data Bank crystallographic database, giving 2592 glycosylation sequons (1683 occupied) and generated a database of 626 nonredundant sequons with 386 occupied. Deviations in the expected amino acid composition were seen around occupied asparagines, particularly an increased occurrence of aromatic residues before the asparagine and threonine at position +2. Glycosylation alters the asparagine side chain torsion angle distribution and reduces its flexibility. There is an elevated probability of finding glycosylation sites in which secondary structure changes. An 11-class taxonomy was developed to describe protein surface geometry around glycosylation sites. Thirty-three percent of the occupied sites are on exposed convex surfaces, 10% in deep recesses and 20% on the edge of grooves with the glycan filling the cleft. A surprisingly large number of glycosylated asparagine residues have a low accessibility. The incidence of aromatic amino acids brought into close contact with the glycan by the folding process is higher than their normal levels on the surface or in the protein core. These data have significant implications for control of sequon occupancy and evolutionary selection of glycosylation sites and are discussed in relation to mechanisms of protein fold stabilization and regional quality control of protein folding. Hydrophobic protein-glycan interactions and the low accessibility of glycosylation sites in folded proteins are common features and may be critical in mediating these functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号