全文获取类型
收费全文 | 399篇 |
免费 | 21篇 |
国内免费 | 1篇 |
专业分类
421篇 |
出版年
2022年 | 2篇 |
2021年 | 4篇 |
2020年 | 2篇 |
2019年 | 2篇 |
2018年 | 2篇 |
2017年 | 2篇 |
2016年 | 9篇 |
2015年 | 14篇 |
2014年 | 15篇 |
2013年 | 17篇 |
2012年 | 21篇 |
2011年 | 29篇 |
2010年 | 12篇 |
2009年 | 20篇 |
2008年 | 20篇 |
2007年 | 17篇 |
2006年 | 16篇 |
2005年 | 16篇 |
2004年 | 13篇 |
2003年 | 9篇 |
2002年 | 12篇 |
2001年 | 5篇 |
2000年 | 13篇 |
1999年 | 10篇 |
1998年 | 10篇 |
1997年 | 7篇 |
1996年 | 5篇 |
1995年 | 3篇 |
1994年 | 5篇 |
1993年 | 6篇 |
1992年 | 7篇 |
1991年 | 9篇 |
1990年 | 7篇 |
1989年 | 7篇 |
1988年 | 3篇 |
1987年 | 8篇 |
1986年 | 7篇 |
1985年 | 5篇 |
1984年 | 3篇 |
1981年 | 3篇 |
1980年 | 6篇 |
1979年 | 5篇 |
1978年 | 7篇 |
1977年 | 3篇 |
1976年 | 5篇 |
1975年 | 3篇 |
1972年 | 1篇 |
1971年 | 8篇 |
1970年 | 2篇 |
1967年 | 1篇 |
排序方式: 共有421条查询结果,搜索用时 31 毫秒
1.
2-Keto-3-deoxygluconate-6P aldolase ofPseudomonas putida mediates exchange between hydrogen isotope at the methylene carbon of 2-ketobutyrate and water. This occurs with aK m of 20 mM, 100 times the corresponding value for pyruvate, and a Vmax approximating 1/710 that of KDPG cleavage. Ketobutyrate is competitive with both pyruvate and 2-keto-3-deoxygluconate-6P for the enzyme. In addition, there is no evidence for C-C synthesis between ketobutyrate andd-glyceraldehyde-3P. A comparison of relativeV/K values for hydrogen exchange shows pyruvate to be 17,600 times better as a substrate than ketobutyrate. The detritiation of [3-3H]ketobutyrate is stereochemically random. In addition, the reaction proceeds with ak H/k T isotope effect of 15.3, consistent with C-H bond turnover being rate-determining. The E-ketobutyrate complex is reductively trapped, inactivating the enzyme. Reductive inactivation kinetics of E-ketobutyrate compared to E-pyruvate suggests more of the complex may be partitioned to ketimine in the ketobutyrate case than in the pyruvate case. A mechanism is considered in which ketobutyrate is bound as a ketimine in an orientation such that the active site acid/basic group cannot mediate catalytic ketimine/eneamine interconversion. Thus, exchange would result from hydrogen ionization at C-3′ of the ketimine, a slow spontaneous step compared to overall complex turnover. This noncatalyzed deprotonation would explain dissymmetry in exchange, the poorV/K compared to pyruvate, and a large tritium isotope effect. 相似文献
2.
Production of glycerol by Hansenula anomala in molasses-corn steep liquor based media was studied. The accumulation and yield of glycerol was dependent on the medium composition and aeration rate; pH control did not affect the yield. Intermittent addition of sugar during fermentation resulted in significant increase in production of glycerol. 相似文献
3.
Developmental stability in brown trout: are there any effects of heterozygosity or environmental stress? 总被引:1,自引:0,他引:1
LEIF ASBJøRN VLLESTAD KJETIL HINDAR 《Biological journal of the Linnean Society. Linnean Society of London》2001,74(3):351-364
We studied the developmental stability of brown trout, Salmo trutta L., in 10 populations (five acidified, five control) in Norway, measured as fluctuating asymmetry (FA) and departure from the morphological norm. We measured four meristic and four morphometric characters, and scored the level of biochemical heterozygosity at 49 loci (20 polymorphic). We reared eggs of a single population in a hatchery using four different water qualities (three replicates of each treatment) to test the effect of acidification stress on developmental instability. There were no significant differences in the level of FA, in departure from the morphological norm between brown trout sampled from lakes with acidified or control water qualities, or in brown trout hatched at different water qualities. There was no correlation between level of heterozygosity and FA or departure from the morphological norm, either when tested within populations or among populations. There were no single-locus effects on developmental stability tested for 11 loci. We conclude that measures of developmental stability or morphological variability are not useful for detecting acidification stress in brown trout. Furthermore, we conclude that developmental stability in our material varies independently of heterozygosity. 相似文献
4.
IRMGARD JGER‐ZÜRN 《Botanical journal of the Linnean Society. Linnean Society of London》2002,138(1):63-84
The scope of morphological plasticity of vegetative structures among Podostemoideae (Podostemaceae) is documented for Crenias weddelliana, a neotropical species, Maferria indica, a palaeotropical species, and Sphaerothylax abyssinica, from Kenya, and compared with related taxa. The study highlights intrinsic characters of the widely enigmatic plant body of many species of the subfamily Podostemoideae. These include dorsiventrality of shoots occurring irrespective of gravity, incurvate distichy and one‐sided spirodistichy correlated with shoot dorsiventrality, asymmetric leaves, and several types of positioning of the two prophylls and inflorescence structures. The homogeneity of hairs of the ‘Zeylanidium olivaceum type’ established on the subulate leaves of some Indian species is of taxonomic value. The latter also applies to the stipella (not stipule) on the asymmetric compound leaf in New World species. The morphological data represent a framework of features consistent for the subfamily. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society, 138 , 63–84. 相似文献
5.
6.
Gagneux P Amess B Diaz S Moore S Patel T Dillmann W Parekh R Varki A 《American journal of physical anthropology》2001,115(2):99-109
Most blood plasma proteins are glycosylated. These glycoproteins typically carry sialic acid-bearing sugar chains, which can modify the observed molecular weights and isoelectric points of those proteins during electrophoretic analyses. To explore changes in protein expression and glycosylation that occurred during great ape and human evolution, we subjected multiple blood plasma samples from all these species to high-resolution proteomic analysis. We found very few species-specific differences, indicating a remarkable degree of conservation of plasma protein expression and glycosylation during approximately 12 million years of evolution. A few lineage-specific differences in protein migration were noted among the great apes. The only obvious differences between humans and all great apes were an apparent decrease in transthyretin (prealbumin) and a change in haptoglobin isoforms (the latter was predictable from prior genetic studies). Quantitative studies of transthyretin in samples of blood plasma (synthesized primarily by the liver) and of cerebrospinal fluid (synthesized locally by the choroid plexus of the brain) confirmed approximately 2-fold higher levels in chimpanzees compared to humans. Since transthyretin binds thyroid hormones, we next compared plasma thyroid hormone parameters between humans and chimpanzees. The results indicate significant differences in the status of thyroid hormone metabolism, which represent the first known endocrine difference between these species. Notably, thyroid hormones are known to play major roles in the development, differentiation, and metabolism of many organs and tissues, including the brain and the cranium. Also, transthyretin is known to be the major carrier of thyroid hormone in the cerebrospinal fluid, likely regulating delivery of this hormone to the brain. A potential secondary difference in retinoid (vitamin A) metabolism is also noted. The implications of these findings for explaining unique features of human evolution are discussed. 相似文献
7.
Control of cell volume in the J774 macrophage by microtubule disassembly and cyclic AMP 总被引:3,自引:5,他引:3 下载免费PDF全文
We have explored the possibilities that cell volume is regulated by the status of microtubule assembly and cyclic AMP metabolism and may be coordinated with shape change. Treatment of J774.2 mouse macrophages with colchicine caused rapid microtubule disassembly and was associated with a striking increase (from 15-20 to more than 90 percent) in the proportion of cells with a large protuberance at one pole. This provided a simple experimental system in which shape changes occurred in virtually an entire cell population in suspension. Parallel changes in cell volume could then be quantified by isotope dilution techniques. We found that the shape change caused by colchicine was accompanied by a decrease in cell volume of approximately 20 percent. Nocodozole, but not lumicolchicine, caused identical changes in both cell shape and cell volume. The volume loss was not due to cell lysis nor to inhibition of pinocytosis. The mechanism of volume loss was also examined. Colchicine induced a small but reproducible increase in activity of the ouabain-sensitive Na(+), K(+)-dependent ATPase. However, inhibition of this enzyme/transport system by ouabain did not change cell volume nor did it block the colchicines-induced decrease in volume. One the other hand, SITS (4’acetamido, 4-isothiocyano 2,2’ disulfonic acid stilbene), an inhibitor of anion transport, inhibited the effects of colchicines, thus suggesting a role for an anion transport system in cell volume regulation. Because colchicine is known to activate adenylate cyclase in several systems and because cell shape changes are often induced by hormones that elevate cyclic AMP, we also examined the effects of cyclic AMP on cell volume. Agents that act to increase syclic AMP (cholera toxin, which activates adenylate cyclase; IBMX, and inhibitor of phosphodiesterase; and dibutyryl cyclic AMP) all caused a volume decrease comparable to that of colchicine. To define the effective metabolic pathway, we studied two mutants of J774.2, one deficient in adenylate cyclase and the other exhibiting markedly reduced activity of cyclic AMP-dependent protein kinase. Cholera toxin did not produce a volume change in either mutant. Cyclic AMP produced a decrease in the cyclase-deficient line comparable to that in wild type, but did not cause a volume change in the kinase- deficient line. This analysis established separate roles for cyclic AMP and colchicine. The volume decrease induced by cyclic AMP requires the action of a cyclic AMP-dependent protein kinase. Colchicine, on the other hand, induced a comparable volume change in both mutants and wild type, and thus does not require the kinase. 相似文献
8.
Jignesh M. Parekh Rajendrasinh N. Vaghela Dipen K. Sutariya Mallika Sanyal Manish Yadav Pranav S. Shrivastav 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2010,878(24):2217-2225
A sensitive, selective and high throughput liquid chromatography tandem mass spectrometry (LC–ESI-MS/MS) method has been developed for the determination of teriflunomide, an active metabolite of leflunomide in human plasma. Plasma samples were prepared by liquid–liquid extraction of teriflunomide and valsartan as internal standard (IS) in ethyl acetate from 200 μL human plasma. The chromatographic separation was achieved on an Inertsil ODS-3 C18 (50 mm × 4.6 mm, 3 μm) analytical column using isocratic mobile phase, consisting of 20 mM ammonium acetate–methanol (25:75, v/v), at a flow-rate of 0.8 mL/min. The precursor → product ion transition for teriflunomide (m/z 269.0 → 82.0) and IS (m/z 434.1 → 350.3) were monitored on a triple quadrupole mass spectrometer, operating in the multiple reaction monitoring (MRM) and negative ion mode. The method was validated over a wide dynamic concentration range of 10.1–4001 ng/mL. Matrix effect was assessed by post-column infusion experiment and the mean process efficiency were 91.7% and 88.2% for teriflunomide and IS respectively. The method was rugged and rapid with a total run time of 2.0 min and is applied to a bioequivalence study of 20 mg leflunomide (test and reference) tablet formulation in 12 healthy Indian male subjects under fasting condition. 相似文献
9.
Natsumi Maruta Yuri Trusov Eric Brenya Urvi Parekh José Ramón Botella 《Plant physiology》2015,167(3):1004-1016
In animals, heterotrimeric G proteins, comprising Gα, Gβ, and Gγ subunits, are molecular switches whose function tightly depends on Gα and Gβγ interaction. Intriguingly, in Arabidopsis (Arabidopsis thaliana), multiple defense responses involve Gβγ, but not Gα. We report here that the Gβγ dimer directly partners with extra-large G proteins (XLGs) to mediate plant immunity. Arabidopsis mutants deficient in XLGs, Gβ, and Gγ are similarly compromised in several pathogen defense responses, including disease development and production of reactive oxygen species. Genetic analysis of double, triple, and quadruple mutants confirmed that XLGs and Gβγ functionally interact in the same defense signaling pathways. In addition, mutations in XLG2 suppressed the seedling lethal and cell death phenotypes of BRASSINOSTEROID INSENSITIVE1-associated receptor kinase1-interacting receptor-like kinase1 mutants in an identical way as reported for Arabidopsis Gβ-deficient mutants. Yeast (Saccharomyces cerevisiae) three-hybrid and bimolecular fluorescent complementation assays revealed that XLG2 physically interacts with all three possible Gβγ dimers at the plasma membrane. Phylogenetic analysis indicated a close relationship between XLGs and plant Gα subunits, placing the divergence point at the dawn of land plant evolution. Based on these findings, we conclude that XLGs form functional complexes with Gβγ dimers, although the mechanism of action of these complexes, including activation/deactivation, must be radically different form the one used by the canonical Gα subunit and are not likely to share the same receptors. Accordingly, XLGs expand the repertoire of heterotrimeric G proteins in plants and reveal a higher level of diversity in heterotrimeric G protein signaling.Heterotrimeric GTP-binding proteins (G proteins), classically consisting of Gα, Gβ, and Gγ subunits, are essential signal transduction elements in most eukaryotes. In animals and fungi, ligand perception by G protein-coupled receptors leads to replacement of GDP with GTP in Gα, triggering activation of the heterotrimer (Li et al., 2007; Oldham and Hamm, 2008). Upon activation, GTP-bound Gα and Gβγ are released and interact with downstream effectors, thereby transmitting signals to multiple intracellular signaling cascades. Signaling terminates when the intrinsic GTPase activity of Gα hydrolyzes GTP to GDP and the inactive heterotrimer reforms at the receptor. The large diversity of mammalian Gα subunits confers specificity to the multiple signaling pathways mediated by G proteins (Wettschureck and Offermanns, 2005). Five distinct classes of Gα have been described in animals (Gαi, Gαq, Gαs, Gα12 and Gαv), with orthologs found in evolutionarily primitive organisms such as sponges (Oka et al., 2009). Humans possess four classes of Gα involving 23 functional isoforms encoded by 16 genes (McCudden et al., 2005), while only a single prototypical Gα is usually found per plant genome (Urano et al., 2013). Multiple copies of Gα are present in some species with recently duplicated genomes, such as soybean (Glycine max) with four Gα genes (Blanc and Wolfe, 2004; Bisht et al., 2011). In the model plant Arabidopsis (Arabidopsis thaliana), a prototypical Gα subunit (GPA1) is involved in a number of important processes, including cell proliferation (Ullah et al., 2001), inhibition of inward K+ channels and activation of anion channels in guard cells by mediating the abscisic acid pathway (Wang et al., 2001; Coursol et al., 2003), blue light responses (Warpeha et al., 2006, 2007), and germination and postgermination development (Chen et al., 2006; Pandey et al., 2006).It is well established that heterotrimeric G proteins play a fundamental role in plant innate immunity. In Arabidopsis, two different Gβγ dimers (Gβγ1 and Gβγ2) are generally considered to be the predominant elements in G protein defense signaling against a variety of fungal pathogens (Llorente et al., 2005; Trusov et al., 2006, 2007, 2009; Delgado-Cerezo et al., 2012; Torres et al., 2013). By contrast, these studies attributed a small or no role to Gα, because mutants deficient in Gα displayed only slightly increased resistance against the fungal pathogens (Llorente et al., 2005; Trusov et al., 2006; Torres et al., 2013). The Gβγ-mediated signaling also contributes to defense against a model bacterial pathogen Pseudomonas syringae, by participating in programmed cell death (PCD) and inducing reactive oxygen species (ROS) production in response to at least three pathogen-associated molecular patterns (PAMPs; Ishikawa, 2009; Liu et al., 2013; Torres et al., 2013). Gα is not involved in PCD or PAMP-triggered ROS production (Liu et al., 2013; Torres et al., 2013). Nonetheless, Arabidopsis Gα plays a positive role in defense against P. syringae, probably by mediating stomatal function and hence physically restricting bacterial entry to the leaf interior (Zhang et al., 2008; Zeng and He, 2010; Lee et al., 2013). Given the small contribution from Gα, the involvement of heterotrimeric G proteins in Arabidopsis resistance could be explained in two ways: either the Gβγ dimer acts independently from Gα, raising a question of how is it activated upon a pathogen attack, or Gα is replaced by another protein for heterotrimer formation.The Arabidopsis genome contains at least three genes encoding Gα-like proteins that have been classified as extra-large G proteins (XLGs; Lee and Assmann, 1999; Ding et al., 2008). XLGs comprise two structurally distinct regions. The C-terminal region is similar to the canonical Gα, containing the conserved helical and GTPase domains, while the N-terminal region is a stretch of approximately 400 amino acids including a putative nuclear localization signal (Ding et al., 2008). GTP binding and hydrolysis were confirmed for all three XLG proteins, although their enzymatic activities are very slow and require Ca2+ as a cofactor, whereas canonical Gα utilizes Mg2+ (Heo et al., 2012). Several other features differentiate XLGs from Gα subunits. Comparative analysis of XLG1 and Gα at the DNA level showed that the genes are organized in seven and 13 exons, respectively, without common splicing sites (Lee and Assmann, 1999). XLGs have been reported to localize to the nucleus (Ding et al., 2008). Analysis of knockout mutants revealed a nuclear function for XLG2, as it physically interacts with the Related To Vernalization1 (RTV1) protein, enhancing the DNA binding activity of RTV1 to floral integrator gene promoters and resulting in flowering initiation (Heo et al., 2012). Therefore, it appears that XLGs may act independently of G protein signaling. On the other hand, functional similarities between XLGs and the Arabidopsis Gβ subunit (AGB1) were also discovered. For instance, XLG3- and Gβ-deficient mutants were similarly impaired in root gravitropic responses (Pandey et al., 2008). Knockout of all three XLG genes caused increased root length, similarly to the Gβ-deficient mutant (Ding et al., 2008). Furthermore, as observed in Gβ-deficient mutants, xlg2 mutants displayed increased susceptibility to P. syringae, indicating a role in plant defense (Zhu et al., 2009). Nevertheless, a genetic analysis of the possible functional interaction between XLGs and Gβ has not been established.In this report, we performed in-depth genetic analyses to test the functional interaction between the three XLGs and Gβγ dimers during defense-related responses in Arabidopsis. We also examined physical interaction between XLG2 and the Gβγ dimers using yeast (Saccharomyces cerevisiae) three-hybrid (Y3H) and bimolecular fluorescent complementation (BiFC) assays. Our findings indicate that XLGs function as direct partners of Gβγ dimers in plant defense signaling. To estimate relatedness of XLGs and Gα proteins, we carried out a phylogenetic analysis. Based on our findings, we conclude that plant XLG proteins most probably originated from a canonical Gα subunit and retained prototypical interaction with Gβγ dimers. They function together with Gβγ in a number of processes including plant defense, although they most probably evolved activation/deactivation mechanisms very different from those of a prototypical Gα. 相似文献
10.
We examined gazelle peripheral blood leucocytes using the α-Naphthyl acetate esterase (ANAE) staining technique (pH 5.8). Our purpose was to determine the percentage of ANAE positive lymphocytes. The proportion of ANAE positive T-lymphocytes was 72%. T-lymphocytes showed an ANAE positive reaction, but eosinophilic granulocytes and monocytes also showed a positive reaction. By contrast, no reaction was detected in B-lymphocytes, neutrophil granulocytes or platelets. The reaction observed in T-lymphocytes was a red-brown coloration, usually 1–2 granules, but enough granules to fill the cytoplasm were detected rarely. As a result of ANAE enzyme staining, we concluded that the staining technique can be used as a cytochemical marker for gazelle T-lymphocytes. 相似文献