首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   25篇
  2022年   3篇
  2021年   6篇
  2020年   6篇
  2019年   8篇
  2018年   7篇
  2017年   4篇
  2016年   10篇
  2015年   16篇
  2014年   7篇
  2013年   6篇
  2012年   10篇
  2011年   7篇
  2010年   6篇
  2009年   3篇
  2008年   8篇
  2007年   4篇
  2006年   11篇
  2005年   5篇
  2004年   4篇
  2003年   7篇
  2002年   8篇
  2001年   5篇
  2000年   5篇
  1999年   5篇
  1998年   8篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   3篇
  1992年   4篇
  1989年   6篇
  1974年   2篇
  1969年   2篇
  1960年   2篇
  1953年   2篇
  1934年   2篇
  1933年   2篇
  1912年   2篇
  1911年   2篇
  1910年   2篇
  1909年   2篇
  1903年   2篇
  1902年   2篇
  1899年   2篇
  1892年   2篇
  1889年   1篇
  1888年   1篇
  1887年   6篇
  1882年   1篇
  1875年   4篇
排序方式: 共有257条查询结果,搜索用时 15 毫秒
1.
T A Paget  M Fry    D Lloyd 《The Biochemical journal》1987,243(2):589-595
1. Mitochondria from the parasitic nematode worm Nippostrongylus brasiliensis produce H2O2 in the energized state; higher rates of H2O2 production were observed in the presence of the uncoupler carbonyl cyanide m-chlorophenylhydrazone. 2. Antimycin A inhibits respiration and H2O2 production by 70 and 65% respectively; the residual activities can be attributed to alternative electron-transport pathway(s). 3. o-Hydroxydiphenyl and 1,3,5-trihydroxybenzene, inhibitors of alternative electron transport, inhibit respiration by 37% and H2O2 production by 26%. 4. Another inhibitor of alternative electron transport, salicylhydroxamic acid, shows a complex mode of action; low concentrations (less than 0.5 mM) stimulate respiration and H2O2 production, whereas 2 mM-salicylhydroxamic acid inhibited respiration by 35% and stopped H2O2 production completely. 5. O2 thresholds were observed for the inhibition of respiration at O2 concentrations greater than 57.7 microM and inhibition of H2O2 production (greater than 20.5 microM-O2); apparent Km values for oxygen were 5.5 microM and 3.0 microM respectively. 6. In the presence of antimycin A the O2-inhibition thresholds and apparent Km values for O2 of respiration and H2O2 production matched closely, suggesting that the alternative oxidase is a likely site of H2O2 production. 7. These results are discussed in relation to O2 toxicity to N. brasiliensis.  相似文献   
2.
The in vitro activity of several new imidazoles, cloconazole, sulconazole, butoconazole, isoconazole and fenticonazole, were compared with those of amphothericin B, flucytosine, and three azoles: econazole, miconazole and ketoconazole against isolates of pathogenic Candida. A total of 186 clinical isolates of 10 species of the genus Candida and two culture collection strains were tested by an agar-dilution technique. Isoconazole was the most active azole, followed by butoconazole and sulconazole. Differences between some of the species in their susceptibility to the antifungal agents were noted. Sulconazole and cloconazole had the highest activity in vitro against 106 isolates of C. albicans. Butoconazole and isoconazole were also very active against isolates of C. albicans, and were the most active azole compounds against 80 isolates of Candida spp.  相似文献   
3.
A novel experimental method was developed which allows the determination of the threshold concentration of sucrose by use of a linear sucrose gradient in water. With this method a continuous tasting of the test-liquid is possible. A panel of 15 persons experienced in taste-testing was used. Three gradients of different steepness were applied: 0 to 1.5% (w/w) sucrose in 2 min (I), 3 min (II) and 4 min (III). The results of the new method were compared with those of the standard method (DIN). With gradients I and II we found values which were significantly higher than those of the standard method (I: 0.49% (w/w); II: 0.46% (w/w); DIN: 0.31% (w/w)), whereas with gradient III the same threshold value was found as with the DIN-Method (III: 0.32% (w/w)).  相似文献   
4.
5.
The phsA gene encodes phenoxazinone synthase (PHS), which catalyses the penultimate step in the pathway for actinomycin biosynthesis in Streptomyces antibioticus . The phsA promoter strikingly resembles a putative Streptomyces σE cognate promoter, and purified EσE holoenzyme transcribed the phsA promoter in vitro . However, the phsA promoter was still active in an S. antibioticus sigE null mutant and the level of PHS activity was unaffected. Despite this, disruption of sigE blocked actinomycin production completely. The loss of actinomycin production correlated with a 10-fold decrease in the activity of actinomycin synthetase I, the enzyme which catalyses the activation of the precursor of the actinomycin chromophore.  相似文献   
6.
7.
应用GLC/MS联用仪对室内培养的钝顶螺旋藻(Spirulina platensis (Nordstedt) Geitler)、极大螺旋藻(S.maxima (Stechell & Gardiner) Geitler)和盐泽螺旋藻(S.subsalsa Oerst)的甾醇成分进行了测定。从钝顶螺旋藻和盐泽螺旋藻中共分出11个相同的甾醇组分:胆甾醇、胆甾烷醇、芸苔甾醇、麦角甾醇、海绵甾醇、菜子甾醇、豆甾醇、24-乙基-Δ~(5,7,22)-胆甾醇、β-谷甾醇、异岩藻甾醇和4α,23,24-三甲基Δ~(5,22)-胆甾醇;从极大螺旋藻中只分离出8个甾醇组分。其中胆甾醇含量最高。4α,23,24-三甲基-Δ~(5,22)-胆甾醇为蓝藻中首次报导。  相似文献   
8.
While responding to a question on medical errors in an in-depth interview, a physician told a story about a medical error. The story revealed his silent involvement in the evolution of the error. His response is presented as a text requiring interpretation. Fine details of his manner of speaking are displayed in order to disclose what he said and what it meant. In interpreting the text, phenomenological and sociolinguistic methods are used.  相似文献   
9.
The flexibility and self-healing properties of animal cell surface membranes are well known. These properties have been best exploited in various micrurgical studies on living cells (2, 3), especially in amoebae (7, 20). During nuclear transplantation in amoebae, the hole in the membrane through which a nucleus passes can have a diameter of 20-30 μm, and yet such holes are quickly sealed, although some cytoplasm usually escapes during the transfer. While enucleating amoebae in previous studies, we found that if a very small portion of a nucleus was pushed through the membrane and exposed to the external medium, the amoeba expelled such a nucleus on its own accord. When this happened, a new membrane appeared to form around the embedded portion of the nucleus and no visible loss of cytoplasm occurred during nuclear extrusion. In the present study, we examined amoebae that were at different stages of expelling partially exposed nuclei, to follow the sequence of events during the apparent new membrane formation. Unexpectedly, we found that a new membrane is not formed around the nucleus from inside but a hole is sealed primarily by a constriction of the existing membrane, and that cytoplasmic filaments are responsible for the prevention of the loss of cytoplasm.  相似文献   
10.
Invariant natural killer T (iNKT) cells are non-conventional lipid-reactive αβ T lymphocytes that play a key role in host responses during viral infections, in particular through the swift production of cytokines. Their beneficial role during experimental influenza A virus (IAV) infection has recently been proposed, although the mechanisms involved remain elusive. Here we show that during in vivo IAV infection, mouse pulmonary iNKT cells produce IFN-γ and IL-22, a Th17-related cytokine critical in mucosal immunity. Although permissive to viral replication, IL-22 production by iNKT cells is not due to IAV infection per se of these cells but is indirectly mediated by IAV-infected dendritic cells (DCs). We show that activation of the viral RNA sensors TLR7 and RIG-I in DCs is important for triggering IL-22 secretion by iNKT cells, whereas the NOD-like receptors NOD2 and NLRP3 are dispensable. Invariant NKT cells respond to IL-1β and IL-23 provided by infected DCs independently of the CD1d molecule to release IL-22. In vitro, IL-22 protects IAV-infected airway epithelial cells against mortality but has no role on viral replication. Finally, during early IAV infection, IL-22 plays a positive role in the control of lung epithelial damages. Overall, IAV infection of DCs activates iNKT cells, providing a rapid source of IL-22 that might be beneficial to preserve the lung epithelium integrity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号