全文获取类型
收费全文 | 136篇 |
免费 | 1篇 |
专业分类
137篇 |
出版年
2023年 | 2篇 |
2022年 | 3篇 |
2021年 | 7篇 |
2020年 | 2篇 |
2019年 | 1篇 |
2018年 | 2篇 |
2017年 | 2篇 |
2016年 | 5篇 |
2015年 | 6篇 |
2014年 | 9篇 |
2013年 | 13篇 |
2012年 | 8篇 |
2011年 | 9篇 |
2010年 | 6篇 |
2009年 | 6篇 |
2008年 | 6篇 |
2007年 | 12篇 |
2006年 | 4篇 |
2005年 | 3篇 |
2004年 | 9篇 |
2003年 | 3篇 |
2002年 | 4篇 |
2000年 | 2篇 |
1997年 | 1篇 |
1994年 | 1篇 |
1993年 | 3篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1987年 | 2篇 |
1986年 | 1篇 |
1983年 | 2篇 |
1981年 | 1篇 |
排序方式: 共有137条查询结果,搜索用时 15 毫秒
1.
Adsorption of proteins onto membranes can alter the local membrane curvature. This phenomenon has been observed in biological processes such as endocytosis, tubulation, and vesiculation. However, it is not clear how the local surface properties of the membrane, such as membrane tension, change in response to protein adsorption. In this article, we show that the partial differential equations arising from classical elastic model of lipid membranes, which account for simultaneous changes in shape and membrane tension due to protein adsorption in a local region, cannot be solved for nonaxisymmetric geometries using straightforward numerical techniques; instead, a viscous-elastic formulation is necessary to fully describe the system. Therefore, we develop a viscous-elastic model for inhomogeneous membranes of the Helfrich type. Using the newly available viscous-elastic model, we find that the lipids flow to accommodate changes in membrane curvature during protein adsorption. We show that, at the end of protein adsorption process, the system sustains a residual local tension to balance the difference between the actual mean curvature and the imposed spontaneous curvature. We also show that this change in membrane tension can have a functional impact such as altered response to pulling forces in the presence of proteins. 相似文献
2.
Inhibition of PARP activity results in extreme sensitization to MMS-induced cell killing in cultured mouse fibroblasts. In these MMS-treated cells, PARP inhibition is accompanied by an accumulation of S-phase cells that requires signaling by the checkpoint kinase ATR [J.K. Horton, D.F. Stefanick, J.M. Naron, P.S. Kedar, S.H. Wilson, Poly(ADP-ribose) polymerase activity prevents signaling pathways for cell cycle arrest following DNA methylating agent exposure, J. Biol. Chem. 280 (2005) 15773-15785]. Here, we examined mouse fibroblast extracts for formation of a complex that may reflect association between the damage responsive proteins PARP-1 and ATR. Co-immunoprecipitation of PARP-1 and ATR was observed in extracts prepared from MMS-treated cells, but not under conditions of PARP inhibition. Further, our experiments demonstrated PAR-adduction of ATR in extracts from control and MMS-treated cells. An interaction between purified ATR and PARP-1 was similarly demonstrated, suggesting that the observed co-immunoprecipitation of ATR and PARP-1 from cell extracts may be due to a direct interaction between the two enzymes. In addition, purified recombinant ATR is a substrate for poly(ADP-ribosyl)ation by PARP-1, and poly(ADP-ribose) adduction of PARP-1 and ATR resulted in an increase in PARP-1 and ATR co-immunoprecipitation. 相似文献
3.
Najma Latif Alfred Quillon Padmini Sarathchandra Ann McCormack Alec Lozanoski Magdi H. Yacoub Adrian H. Chester 《PloS one》2015,10(6)
Valve interstitial cells (VICs) are fibroblastic in nature however in culture it is widely accepted that they differentiate into a myofibroblastic phenotype. This study assessed a fibroblast culture media formulation for its ability to maintain the phenotype and function of VICs as in the intact healthy valve. Normal human VICs were cultured separately in standard DMEM and in fibroblast media consisting of FGF2 (10ng/ml), insulin (50ng/ml) and 2% FCS for at least a week. Cell morphology, aspect ratio, size, levels and distribution of protein expression, proliferation, cell cycle, contraction and migration were assessed. Some VICs and some valve endothelial cells expressed FGF2 in valve tissue and this expression was increased in calcified valves. VICs in DMEM exhibited large, spread cells whereas VICs in fibroblast media were smaller, elongated and spindly. Aspect ratio and size were both significantly higher in DMEM (p<0.01). The level of expression of α-SMA was significantly reduced in fibroblast media at day 2 after isolation (p<0.01) and the expression of α-SMA, SM22 and EDA-fibronectin was significantly reduced in fibroblast media at days 7 and 12 post-isolation (p<0.01). Expression of cytoskeletal proteins, bone marker proteins and extracellular matrix proteins was reduced in fibroblast media. Proliferation of VICs in fibroblast media was significantly reduced at weeks 1 (p<0.05) and 2 (p<0.01). Collagen gel contraction was significantly reduced in fibroblast media (p<0.05). VICs were found to have significantly fewer and smaller focal adhesions in fibroblast media (p<0.01) with significantly fewer supermature focal adhesions in fibroblast media (p<0.001). Ultrastructurally, VICs in fibroblast media resembled native VICs from intact valves. VICs in fibroblast media demonstrated a slower migratory ability after wounding at 72 hours (p<0.01). Treatment of human VICs with this fibroblast media formulation has the ability to maintain and to dedifferentiate the VICs back to a fibroblastic phenotype with phenotypic and functional characteristics ascribed to cells in the intact valve. This methodology is fundamental in the study of normal valve biology, pathology and in the field of tissue engineering. 相似文献
4.
5.
Salgame P 《Cell host & microbe》2008,4(5):415-416
The proteasome machinery has been shown to provide Mycobacterium tuberculosis (Mtb) with the ability to protect itself from the damaging effects of reactive nitrogen intermediates. In their recent paper, Darwin and colleagues identify the protein modifier in Mtb that targets substrates for degradation in the Mtb proteasome. 相似文献
6.
7.
Ekambaram Padmini Munuswamy Usha Rani 《Comparative biochemistry and physiology. Toxicology & pharmacology : CBP》2010,151(2):187-193
Induction of antioxidant proteins like thioredoxin (Trx) and heat shock protein 90α (HSP90α) is a crucial step in the cellular response to oxidative stress. Here, we report the impact of environmental stress on Trx and HSP90α expressions in freshly isolated hepatocytes of Mugil cephalus living in either a contaminated (Test; Ennore) or uncontaminated (Control; Kovalam) estuary. Modulation in the activities of signal transduction molecules like apoptosis signal-regulating kinase 1 (ASK1) and c-Jun NH2-terminal kinase 1/2 (JNK1/2) were also investigated to understand their functional role under natural stressed condition. The expression pattern of the proteins was determined by immunoblotting and the relationship between the proteins was identified by regression analysis. Test fish hepatocytes demonstrated significant upregulation (P < 0.05) in the levels of Trx and HSP90α and insignificant inductions in the expression pattern of ASK1 and JNK1/2 than control fish hepatocytes. These findings provide direct evidence that Trx and HSP90α induction in fish hepatocytes under stress may aid cell survival by negatively regulating ASK1 expression and thereby functionally antagonizing the apoptotic role of JNK1/2 in natural aquatic systems. 相似文献
8.
Yuguang Xiong Padmini Rangamani Marc-Antoine Fardin Benjamin Dubin-Thaler Michael P. Sheetz 《Biophysical journal》2010,98(10):2136-2146
Cell motility is important for many developmental and physiological processes. Motility arises from interactions between physical forces at the cell surface membrane and the biochemical reactions that control the actin cytoskeleton. To computationally analyze how these factors interact, we built a three-dimensional stochastic model of the experimentally observed isotropic spreading phase of mammalian fibroblasts. The multiscale model is composed at the microscopic levels of three actin filament remodeling reactions that occur stochastically in space and time, and these reactions are regulated by the membrane forces due to membrane surface resistance (load) and bending energy. The macroscopic output of the model (isotropic spreading of the whole cell) occurs due to the movement of the leading edge, resulting solely from membrane force-constrained biochemical reactions. Numerical simulations indicate that our model qualitatively captures the experimentally observed isotropic cell-spreading behavior. The model predicts that increasing the capping protein concentration will lead to a proportional decrease in the spread radius of the cell. This prediction was experimentally confirmed with the use of Cytochalasin D, which caps growing actin filaments. Similarly, the predicted effect of actin monomer concentration was experimentally verified by using Latrunculin A. Parameter variation analyses indicate that membrane physical forces control cell shape during spreading, whereas the biochemical reactions underlying actin cytoskeleton dynamics control cell size (i.e., the rate of spreading). Thus, during cell spreading, a balance between the biochemical and biophysical properties determines the cell size and shape. These mechanistic insights can provide a format for understanding how force and chemical signals together modulate cellular regulatory networks to control cell motility. 相似文献
9.
Hong S Porter TF Lu Y Oh SF Pillai PS Serhan CN 《Journal of immunology (Baltimore, Md. : 1950)》2008,180(5):3512-3519
Resolvin E1 (RvE1; 5S,12R,18R-trihydroxy-6Z,8E,10E,14Z,16E-eicosapentaenoic acid) is a potent anti-inflammatory and proresolving mediator derived from the omega-3 eicosapentaenoic acid. In this study, we report the RvE1 metabolome, namely, the metabolic products derived from RvE1. RvE1 was converted to several novel products by human polymorphonuclear leukocytes and whole blood as well as in murine inflammatory exudates, spleen, kidney, and liver. The potential activity of each of the newly identified products was directly compared with that of RvE1. The new RvE1 products elucidated included 19-hydroxy-RvE1, 20-carboxy-RvE1, and 10,11-dihydro-RvE1. Metabolomic profiles of RvE1 were species-, tissue-, and cell type-specific. Direct comparisons of the bioactions between isolated RvE1 metabolic products indicated that 10,11-dihydro-RvE1, 18-oxo-RvE1, and 20-carboxy-RvE1 displayed reduced bioactivity in vivo. At concentrations as low as 1 nM, RvE1 enhanced macrophage phagocytosis, a proresolving activity that was reduced by metabolic inactivation. These results document novel metabolic products of RvE1 that impact its actions and that both omega-1 hydroxylation and reduction of conjugated double bonds in RvE1 are new pathways of four main routes of RvE1 metabolism in mammalian tissues. Together, these findings indicate that, during inflammation and its controlled resolution, specific tissues inactivate proresolving signals, i.e., RvE1, to permit the coordinated return to homeostasis. Moreover, the RvE1 metabolome may serve as a biomarker of these processes. 相似文献
10.
Sahai A Malladi P Melin-Aldana H Green RM Whitington PF 《American journal of physiology. Gastrointestinal and liver physiology》2004,287(1):G264-G273
The pathogenesis of nonalcoholic steatohepatitis (NASH) is poorly defined. Feeding mice a diet deficient in methionine and choline (MCD diet) induces experimental NASH. Osteopontin (OPN) is a Th1 cytokine that plays an important role in several fibroinflammatory diseases. We examined the role of OPN in the development of experimental NASH. A/J mice were fed MCD or control diet for up to 12 wk, and serum alanine aminotransferase (ALT), liver histology, oxidative stress, and the expressions of OPN, TNF-alpha, and collagen I were assessed at various time points. MCD diet-fed mice developed hepatic steatosis starting after 1 wk and inflammation by 2 wk; serum ALT increased from day 3. Hepatic collagen I mRNA expression increased during 1-4 wk, and fibrosis appeared at 8 wk. OPN protein expression was markedly increased on day 1 of MCD diet and persisted up to 8 wk, whereas OPN mRNA expression was increased at week 4. TNF-alpha expression was increased from day 3 to 2 wk, and evidence of oxidative stress did not appear until 8 wk. Increased expression of OPN was predominantly localized in hepatocytes. Hepatocytes in culture also produced OPN, which was stimulated by transforming growth factor-beta and TNF-alpha. Moreover, MCD diet-induced increases in serum ALT levels, hepatic inflammation, and fibrosis were markedly reduced in OPN(-/-) mice when compared with OPN(+/+) mice. In conclusion, our results demonstrate an upregulation of OPN expression early in the development of steatohepatitis and suggest an important role for OPN in signaling the onset of liver injury and fibrosis in experimental NASH. 相似文献