首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   357篇
  免费   10篇
  367篇
  2024年   2篇
  2023年   1篇
  2022年   6篇
  2021年   10篇
  2020年   7篇
  2019年   10篇
  2018年   3篇
  2017年   2篇
  2016年   5篇
  2015年   19篇
  2014年   14篇
  2013年   20篇
  2012年   45篇
  2011年   36篇
  2010年   24篇
  2009年   10篇
  2008年   29篇
  2007年   34篇
  2006年   19篇
  2005年   27篇
  2004年   21篇
  2003年   13篇
  2002年   6篇
  2001年   2篇
  1998年   2篇
排序方式: 共有367条查询结果,搜索用时 15 毫秒
1.
Outer pore topology of the ECaC-TRPV5 channel by cysteine scan mutagenesis   总被引:6,自引:0,他引:6  
The substituted cysteine accessibility method (SCAM) was used to map the external vestibule and the pore region of the ECaC-TRPV5 calcium-selective channel. Cysteine residues were introduced at 44 positions from the end of S5 (Glu515) to the beginning of S6 (Ala560). Covalent modification by positively charged MTSET applied from the external medium significantly inhibited whole cell currents at 15/44 positions. Strongest inhibition was observed in the S5-linker to pore region (L520C, G521C, and E522C) with either MTSET or MTSES suggesting that these residues were accessible from the external medium. In contrast, the pattern of covalent modification by MTSET for residues between Pro527 and Ile541 was compatible with the presence of a alpha-helix. The absence of modification by the negatively charged MTSES in that region suggests that the pore region has been optimized to favor the entrance of positively charged ions. Cysteine mutants at positions -1, 0, +1, +2 around Asp542 (high Ca2+ affinity site) were non-functional. Whole cell currents of cysteine mutants at +4 and +5 positions were however covalently inhibited by external MTSET and MTSES. Altogether, the pattern of covalent modification by MTS reagents globally supports a KcsA homology-based three-dimensional model whereby the external vestibule in ECaC-TRPV5 encompasses three structural domains consisting of a coiled structure (Glu515 to Tyr526) connected to a small helical segment of 15 amino acids (527PTALFSTFELFLT539) followed by two distinct coiled structures Ile540-Pro544 (selectivity filter) and Ala545-Ile557 before the beginning of S6.  相似文献   
2.
3.
Tuncbag N  Keskin O  Nussinov R  Gursoy A 《Proteins》2012,80(4):1239-1249
The similarity between folding and binding led us to posit the concept that the number of protein-protein interface motifs in nature is limited, and interacting protein pairs can use similar interface architectures repeatedly, even if their global folds completely vary. Thus, known protein-protein interface architectures can be used to model the complexes between two target proteins on the proteome scale, even if their global structures differ. This powerful concept is combined with a flexible refinement and global energy assessment tool. The accuracy of the method is highly dependent on the structural diversity of the interface architectures in the template dataset. Here, we validate this knowledge-based combinatorial method on the Docking Benchmark and show that it efficiently finds high-quality models for benchmark complexes and their binding regions even in the absence of template interfaces having sequence similarity to the targets. Compared to "classical" docking, it is computationally faster; as the number of target proteins increases, the difference becomes more dramatic. Further, it is able to distinguish binders from nonbinders. These features allow performing large-scale network modeling. The results on an independent target set (proteins in the p53 molecular interaction map) show that current method can be used to predict whether a given protein pair interacts. Overall, while constrained by the diversity of the template set, this approach efficiently produces high-quality models of protein-protein complexes. We expect that with the growing number of known interface architectures, this type of knowledge-based methods will be increasingly used by the broad proteomics community.  相似文献   
4.
5.
In this study, alterations in the liver antioxidant enzymes status and lipid peroxidation in short-term (8-weeks) and long-term (24-weeks) diabetic rats were examined. Glutathione peroxidase (GSH-Px) activity and malondialdehyde (MDA) levels were significantly increased, but superoxide dismutase (SOD) activity was significantly reduced in 8-weeks diabetic rats, compared to control. Catalase (CAT) activity, however, was found unchanged. In 24-weeks diabetic rats, while GSH-Px activity was unchanged, but SOD and CAT activities and MDA levels were significantly increased, compared to control. These results suggest that diabetes-induced alterations in tissue antioxidant system may reflect a generalized increase in tissue oxidative stress. It can be concluded that lipid peroxidation and antioxidant enzyme levels are elevated in diabetic condition. Hence, diabetes mellitus, if left untreated, may increase degenerative processes due to accumulation of oxidative free radicals.  相似文献   
6.
Opportunistic infections, common in HIV-1-infected patients, increase HIV replication; however, the intracellular signaling mechanisms involved are not clearly known. We have shown that Toll-like receptor 2 (TLR2), TLR4, and TLR9 mediate microbial Ag-induced HIV-long terminal repeat (HIV-LTR) trans-activation and HIV-1 replication, and that LPS-induced HIV-LTR trans-activation is mediated through myeloid differentiation adapter protein. Recently, Toll-IL-1R domain-containing adapter protein (TIRAP) has been identified as an adapter molecule that mediates responses to TLR2 and TLR4 ligands, and TIRAP was suggested to provide signaling specificity for different TLRs. Rac1, a small GTP-binding protein that is activated upon LPS stimulation of macrophages, activates phosphatidylinositol 3-kinase and Akt and leads to NF-kappaB activation. The roles of Rac1 and TIRAP in LPS activation of HIV replication is not known. In the present study we show that LPS stimulation of human microvessel endothelial cells leads to Rac1 activation. Constitutively active Rac1 (Rac1V12) simulated the effect of LPS to activate HIV-LTR, whereas the expression of dominant negative Rac1 (Rac1N17) partially blocked LPS-induced HIV-LTR trans-activation. Rac1V12-induced HIV-LTR activation was independent of myeloid differentiation adapter protein, and dominant negative TIRAP blocked Rac1V12-induced HIV-LTR trans-activation. In this study we show for the first time that activation of Rac1 leads to HIV-LTR trans-activation, and this is mediated through TIRAP. Together these results underscore the importance of Rac1 and TIRAP in TLR4 activation of HIV replication and help delineate the signaling pathways induced by TLRs to mediate microbial Ag-induced HIV replication and HIV pathogenesis.  相似文献   
7.
The objective of the study was to investigate the effects of plasma viscosity after hemodilution on the thickness of the erythrocyte cell free layer (CFL) and on the interface between the flowing column of erythrocytes and the vascular endothelium. The erythrocyte CFL thickness was measured in the rat cremaster muscle preparation. Plasma viscosity was modified in an isovolemic hemodilution, in which the systemic hematocrit (Hctsys) was lowered to 30%. The plasma expanders (PE) of similar nature and different viscosities were generated by glutaraldehyde polymerization of human serum albumin (HSA) at various molar ratios glutaraldehyde to HSA: (i) unpolymerized HSA; (ii) PolyHSA24:1, molar ratio = 24 and (iii) PolyHSA60:1, molar ratio = 60. The HSA viscosities determined at 200 s(-1) were 1.1, 4.2 and 6.0 dyn x cm(-2), respectively. CFL thickness, vessel diameter and blood flow velocity were measured, while volumetric flow, shear rate and stress were calculated. Hemodilution with PolyHSA60:1 increased plasma viscosity and the blood showed marked shear thinning behavior. CFL thickness decreased as plasma viscosity increased after hemodilution; thus the CFL thickness with HSA and PolyHSA24:1 increased compared to baseline. Conversely, the CFL thickness of PolyHSA60:1 was not different from baseline. Blood flow increased with both PolyHSA's compared to baseline. Wall shear rate and shear stress increased for PolyHSA60:1 compared to HSA and PolyHSA24:1, respectively. In conclusion, PE viscosity determined plasma viscosity after hemodilution and affected erythrocyte column hydrodynamics, changing the velocity profile, CFL thickness, and wall shear stress. This study relates the perfusion caused by PolyHSA60:1 to hemodynamic changes induced by the rheological properties of blood diluted with PolyHSA60:1.  相似文献   
8.

Background

Keratins 8 and 18 (K8/K18) are intermediate filament proteins that protect the liver from various forms of injury. Exonic K8/K18 variants associate with adverse outcome in acute liver failure and with liver fibrosis progression in patients with chronic hepatitis C infection or primary biliary cirrhosis. Given the association of K8/K18 variants with end-stage liver disease and progression in several chronic liver disorders, we studied the importance of keratin variants in patients with hemochromatosis.

Methods

The entire K8/K18 exonic regions were analyzed in 162 hemochromatosis patients carrying homozygous C282Y HFE (hemochromatosis gene) mutations. 234 liver-healthy subjects were used as controls. Exonic regions were PCR-amplified and analyzed using denaturing high-performance liquid chromatography and DNA sequencing. Previously-generated transgenic mice overexpressing K8 G62C were studied for their susceptibility to iron overload. Susceptibility to iron toxicity of primary hepatocytes that express K8 wild-type and G62C was also assessed.

Results

We identified amino-acid-altering keratin heterozygous variants in 10 of 162 hemochromatosis patients (6.2%) and non-coding heterozygous variants in 6 additional patients (3.7%). Two novel K8 variants (Q169E/R275W) were found. K8 R341H was the most common amino-acid altering variant (4 patients), and exclusively associated with an intronic KRT8 IVS7+10delC deletion. Intronic, but not amino-acid-altering variants associated with the development of liver fibrosis. In mice, or ex vivo, the K8 G62C variant did not affect iron-accumulation in response to iron-rich diet or the extent of iron-induced hepatocellular injury.

Conclusion

In patients with hemochromatosis, intronic but not exonic K8/K18 variants associate with liver fibrosis development.  相似文献   
9.
Signal peptidase functions to cleave signal peptides from preproteins at the cell membrane. It has a substrate specificity for small uncharged residues at -1 (P1) and aliphatic residues at the -3 (P3) position. Previously, we have reported that certain alterations of the Ile-144 and Ile-86 residues in Escherichia coli signal peptidase I (SPase) can change the specificity such that signal peptidase is able to cleave pro-OmpA nuclease A in vitro after phenylalanine or asparagine residues at the -1 position (Karla, A., Lively, M. O., Paetzel, M. and Dalbey, R. (2005) J. Biol. Chem. 280, 6731-6741). In this study, screening of a fluorescence resonance energy transfer-based peptide library revealed that the I144A, I144C, and I144C/I86T SPase mutants have a more relaxed substrate specificity at the -3 position, in comparison to the wild-type SPase. The double mutant tolerated arginine, glutamine, and tyrosine residues at the -3 position of the substrate. The altered specificity of the I144C/I86T mutant was confirmed by in vivo processing of pre-beta-lactamase containing non-canonical arginine and glutamine residues at the -3 position. This work establishes Ile-144 and Ile-86 as key P3 substrate specificity determinants for signal peptidase I and demonstrates the power of the fluorescence resonance energy transfer-based peptide library approach in defining the substrate specificity of proteases.  相似文献   
10.
BmBKTx1 is a novel short chain toxin purified from the venom of the Asian scorpion Buthus martensi Karsch. It is composed of 31 residues and is structurally related to SK toxins. However, when tested on the cloned rat SK2 channel, it only partially inhibited rSK2 currents, even at a concentration of 1 microm. To screen for other possible targets, BmBKTx1 was then tested on isolated metathoracic dorsal unpaired median neurons of Locusta migratoria, in which a wide variety of ion channels are expressed. The results suggested that BmBKTx1 could specifically block voltage-gated Ca(2+)-activated K(+) currents (BK-type). This was confirmed by testing the BmBKTx1 effect on the alpha subunits of BK channels of the cockroach (pSlo), fruit fly (dSlo), and human (hSlo), heterologously expressed in HEK293 cells. The IC(50) for channel blocking by BmBKTx1 was 82 nm for pSlo and 194 nm for dSlo. Interestingly, BmBKTx1 hardly affected hSlo currents, even at concentrations as high as 10 microm, suggesting that the toxin might be insect specific. In contrast to most other scorpion BK blockers that also act on the Kv1.3 channel, BmBKTx1 did not affect this channel as well as other Kv channels. These results show that BmBKTx1 is a novel kind of blocker of BK-type Ca(2+)-activated K(+) channels. As the first reported toxin active on the Drosophila Slo channel dSlo, it will also greatly facilitate studying the physiological role of BK channels in this model organism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号