首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1206篇
  免费   68篇
  1274篇
  2022年   19篇
  2021年   21篇
  2020年   12篇
  2019年   11篇
  2018年   24篇
  2017年   23篇
  2016年   39篇
  2015年   54篇
  2014年   55篇
  2013年   65篇
  2012年   93篇
  2011年   75篇
  2010年   59篇
  2009年   38篇
  2008年   51篇
  2007年   29篇
  2006年   42篇
  2005年   43篇
  2004年   35篇
  2003年   41篇
  2002年   29篇
  2001年   34篇
  2000年   31篇
  1999年   28篇
  1998年   23篇
  1997年   12篇
  1996年   9篇
  1995年   12篇
  1994年   7篇
  1993年   6篇
  1992年   27篇
  1991年   22篇
  1990年   19篇
  1989年   20篇
  1988年   17篇
  1987年   21篇
  1986年   17篇
  1985年   12篇
  1984年   8篇
  1983年   10篇
  1982年   10篇
  1979年   6篇
  1978年   9篇
  1976年   7篇
  1975年   6篇
  1974年   4篇
  1973年   4篇
  1972年   7篇
  1970年   5篇
  1966年   4篇
排序方式: 共有1274条查询结果,搜索用时 15 毫秒
1.
Cellular retinol-binding protein (CRBP) and cellular retinol-binding protein, type ii (CRBP(II] are cytoplasmic proteins that bind trans-retinol as an endogenous ligand. These proteins are structurally similar having greater than 50% sequence homology. Employing fluorescence, absorbance, and competition studies, the ability of pure preparations of CRBP(II) and CRBP to bind various members of the vitamin A family has been examined. In addition to trans-retinol, CRBP(II) was able to form high affinity complexes (K'd less than 5 X 10(-8) M) with 13-cis-retinol, 3-dehydroretinol, and all-trans-retinaldehyde. CRBP bound those retinol isomers with similar affinities, but did not bind trans-retinaldehyde. Neither protein bound retinoic acid nor 9-cis- and 11-cis-retinol. The spectra of 13-cis-retinol and 3-dehydroretinol, when bound, were shifted and displayed fine structure compared to their spectra in organic solution. However, the lambda max and fluorescent yield of a particular ligand were different when bound to CRBP(II) versus CRBP. It appears that CRBP(II) and CRBP bind trans-retinol, 13-cis-retinol, and 3-dehydroretinol in a planar configuration. However, the binding sites of CRBP(II) and CRBP are clearly distinct based on the observed spectral differences of the bound ligands and the observations that only CRBP(II) could bind trans-retinaldehyde. The ability of CRBP(II) to bind trans-retinaldehyde suggests a physiological role for the protein in accepting retinaldehyde generated from the cleavage of beta-carotene in the absorptive cell.  相似文献   
2.
Studies have been conducted to determine whether the mutagens in fried beef ingested by human subjects are excreted in the urine. Urine samples were collected from individuals on liquid or regular diets before and after a fried beef meal. The mutagenic activity of the samples was tested in the Ames Salmonella/microsome assay system. The results showed that in individuals on liquid diets, most of the urinary mutagenic activity is recovered within 2-6 h after consuming a fried beef meal. In one individual tested, mutagenic activity was found in urine samples obtained 6-15 h after the fried beef meal. No mutagenic activity was detected in any of the urine samples obtained 15-24 h following the meal. In individuals on a regular diet, however, mutagenic activity was frequently observed in urine samples obtained 16-24 h following the fried beef meal, although the mutagenic activity was not as great as that in the preceding 16 h. It appears that the mutagenic agents generated by the frying of beef are ingested, absorbed, and excreted by the human body in biologically detectable quantities. These results suggest that subjects should abstain from fried beef at least one day prior to and during urine mutagenicity screening.  相似文献   
3.
Excised tomato cotyledonswere subjected to mannitol induced water stress solutions for three days. Extracts of proteins and the enzyme peroxidase were made and separated with polyacrylamide gel electrophoresis. The water stress injury caused increases in bigger protein molecules but decreases in smaller protein molecules. The small fastest moving peroxidase isozyme was almost completely eliminated. Applications of growth regulators to the stress solutions indicated that the protein and peroxidase changes could be explained on the basis of reduction in endogenous cytokinin activities by the water stress.  相似文献   
4.
Diet is considered as one of the most important modifiable factors influencing human health, but efforts to identify foods or dietary patterns associated with health outcomes often suffer from biases, confounding, and reverse causation. Applying Mendelian randomization in this context may provide evidence to strengthen causality in nutrition research. To this end, we first identified 283 genetic markers associated with dietary intake in 445,779 UK Biobank participants. We then converted these associations into direct genetic effects on food exposures by adjusting them for effects mediated via other traits. The SNPs which did not show evidence of mediation were then used for MR, assessing the association between genetically predicted food choices and other risk factors, health outcomes. We show that using all associated SNPs without omitting those which show evidence of mediation, leads to biases in downstream analyses (genetic correlations, causal inference), similar to those present in observational studies. However, MR analyses using SNPs which have only a direct effect on the exposure on food exposures provided unequivocal evidence of causal associations between specific eating patterns and obesity, blood lipid status, and several other risk factors and health outcomes.  相似文献   
5.
We showed that muscarinic acetylcholine (ACh)-stimulation increased the cellular content of cADPR in the pancreatic acinar cells from normal mice but not in those from CD38 knockout mice. By monitoring ACh-evoked increases in the cytosolic Ca(2+) concentration ([Ca(2+)](i)) using fura-2 microfluorimetry, we distinguished and characterized the Ca(2+) release mechanisms responsive to cADPR. The Ca(2+) response from the cells of the knockout mice (KO cells) lacked two components of the muscarinic Ca(2+) release present in wild mice. The first component inducible by the low concentration of ACh contributed to regenerative Ca(2+) spikes. This component was abolished by ryanodine treatment in the normal cells and was severely impaired in KO cells, indicating that the low ACh-induced regenerative spike responses were caused by cADPR-dependent Ca(2+) release from a pool regulated by a class of ryanodine receptors. The second component inducible by the high concentration of ACh was involved in the phasic Ca(2+) response, and it was not abolished by ryanodine treatment. Overall, we conclude that muscarinic Ca(2+) signaling in pancreatic acinar cells involves a CD38-dependent pathway responsible for two cADPR-dependent Ca(2+) release mechanisms in which the one sensitive to ryanodine plays a crucial role for the generation of repetitive Ca(2+) spikes.  相似文献   
6.
Gain‐of‐toxic‐function mutations in Seipin (Asparagine 88 to Serine (N88S) and Serine 90 to Leucine (S90L) mutations, both of which disrupt the N‐glycosylation) cause autosomal dominant motor neuron diseases. However, the mechanism of how these missense mutations lead to motor neuropathy is unclear. Here, we analyze the impact of disruption of N‐glycosylation of Seipin on synaptic transmission by over‐expressing mutant Seipin in cultured cortical neurons via lentiviral infection. Immunostaining shows that over‐expressed Seipin is partly colocalized with synaptic vesicle marker synaptophysin. Electrophysiological recordings reveal that the Seipin mutation significantly decreases the frequency, but not the amplitudes of miniature excitatory post‐synaptic currents and miniature inhibitory post‐synaptic currents. The amplitude of both evoked excitatory post‐synaptic currents and inhibitory post‐synaptic current is also compromised by mutant Seipin over‐expression. The readily releasable pool and vesicular release probability of synaptic vesicles are both altered in neurons over‐expressing Seipin‐N88S, whereas neither γ‐amino butyric acid (GABA) nor α‐Amino‐3‐hydroxy‐5‐methyl‐4‐ isoxazolepropionic acid (AMPA) induced whole cell currents are affected. Moreover, electron microscopy analysis reveals decreased number of morphologically docked synaptic vesicles in Seipin‐N88S‐expressing neurons. These data demonstrate that Seipin‐N88S mutation impairs synaptic neurotransmission, possibly by regulating the priming and docking of synaptic vesicles at the synapse.

  相似文献   

7.
Three days old excised tomato cotyledons were subjected to mannitol induced water stress in the presence of actinomycin D and cycloheximide. Within a few hours, in the presence of actinomycin D but not cycloheximide, water stress induced increase in ribonuclease activities and decrease in beta-fructofuranosidase activities. The water stress action in the presence of actinomycin D was reversible by addition of kinetin. It was postulated that water stress had some immediate fundamental action on the protein synthesis sites at the ribosomes.  相似文献   
8.
The functions of the two proteins defective in autosomal dominant polycystic kidney disease, polycystin-1 and polycystin-2, have not been fully clarified, but it has been hypothesized that they may heterodimerize to form a "polycystin complex" involved in cell adhesion. In this paper, we demonstrate for the first time the existence of a native polycystin complex in mouse kidney tubular cells transgenic for PKD1, non-transgenic kidney cells, and normal adult human kidney. Polycystin-1 is heavily N-glycosylated, and several glycosylated forms of polycystin-1 differing in their sensitivity to endoglycosidase H (Endo H) were found; in contrast, native polycystin-2 was fully Endo H-sensitive. Using highly specific antibodies to both proteins, we show that polycystin-2 associates selectively with two species of full-length polycystin-1, one Endo H-sensitive and the other Endo H-resistant; importantly, the latter could be further enriched in plasma membrane fractions and co-immunoprecipitated with polycystin-2. Finally, a subpopulation of this complex co-localized to the lateral cell borders of PKD1 transgenic kidney cells. These results demonstrate that polycystin-1 and polycystin-2 interact in vivo to form a stable heterodimeric complex and suggest that disruption of this complex is likely to be of primary relevance to the pathogenesis of cyst formation in autosomal dominant polycystic kidney disease.  相似文献   
9.
10.
Lipocalin 2 (LCN2) is produced by mammalian hosts to bind bacterial siderophore and sequester free iron as part of an innate immune response, and could also play a role in tissue iron homeostasis, but thus far, little is known about its expression in the CNS. The present study was carried out to study the expression of the lipocalin in the normal rat brain and after neuronal injury induced by kainate (KA). Low levels of LCN2 mRNA and protein expression were detected in most regions of the normal brain except the olfactory bulb, brainstem and cerebellum. KA lesions resulted in damage to the hippocampus, leading to an early increase at three days and a sustained elevation in LCN2 mRNA level of 16-fold, and protein expression at 80-fold in the lesioned tissue compared to controls at 2 weeks post-KA injection. The sustained elevation in mRNA expression was not detected among other lipocalins surveyed using real-time RT-PCR - apoD, PGDS, Rbp4 and LCN5. Single and double immunostaining confirmed that LCN2 is present in astrocytes in the olfactory bulb, brainstem and cerebellum of the normal brain, and reactive astrocytes in the KA-lesioned hippocampus. In conclusion, the present study showed LCN2 to be present in select brain regions, and is upregulated in astrocytes after neuronal injury induced by kainate. We postulate that, as in the periphery, LCN2 may have a role in iron transport or trafficking in the CNS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号