首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   13篇
  国内免费   1篇
  227篇
  2021年   2篇
  2017年   3篇
  2015年   4篇
  2014年   6篇
  2013年   9篇
  2012年   9篇
  2011年   5篇
  2010年   7篇
  2009年   6篇
  2008年   5篇
  2007年   5篇
  2006年   7篇
  2005年   5篇
  2004年   7篇
  2003年   7篇
  2002年   2篇
  2001年   12篇
  2000年   5篇
  1999年   10篇
  1998年   10篇
  1997年   10篇
  1995年   4篇
  1994年   3篇
  1992年   4篇
  1990年   5篇
  1989年   4篇
  1988年   3篇
  1987年   5篇
  1986年   4篇
  1985年   6篇
  1983年   3篇
  1982年   3篇
  1981年   6篇
  1980年   3篇
  1978年   2篇
  1977年   2篇
  1976年   5篇
  1975年   3篇
  1973年   2篇
  1970年   1篇
  1969年   2篇
  1967年   2篇
  1966年   1篇
  1963年   1篇
  1959年   1篇
  1954年   1篇
  1950年   1篇
  1933年   1篇
  1924年   1篇
  1923年   1篇
排序方式: 共有227条查询结果,搜索用时 0 毫秒
1.
Highly larvicidal strains of Bacillus sphaericus produce a binary toxin composed of 51 and 42 kDa proteins which binds to sharply delineated regions of the gastric caecum and posterior midgut of susceptible larvae of the mosquito Culex quinquefasciatus. To investigate the role of the individual subunits and the organization of functional binding regions within the toxin, plasmids were constructed for the expression in Escherichia coli of the toxin proteins and their NH2- and COOH-terminal deletion derivatives as fusions with glutathione S-transferase (GST). Toxin proteins were purified by affinity chromatography followed by cleavage from the GST carrier with thrombin. The LC50 values for the purified toxin proteins and their deletion derivatives were determined. The binding patterns of fluorescently labelled toxin suggested that the 51 kDa protein is the primary binding component of the toxin and mediates the regional binding and internalization of the 42 kDa protein. Examination of the toxin deletion derivatives revealed that the NH2-terminal region of the 51 kDa protein was required for binding to the larval gut, whilst the COOH-terminal region was responsible for interacting with the 42 kDa protein. Toxicity was strongly correlated with the subsequent internalization of the toxin, probably by endocytosis.  相似文献   
2.
A new method making use of a radiochemical enzyme assay at the single cell level is presented to investigate metabolic cooperation, a widely studied form of cellular communication. In this case metabolic cooperation between normal human fibroblasts and fibroblasts derived from a patient deficient for the enzyme hypoxanthine-guanine phosphoribosyl transferase has been studied.A mixture of an equal number of both cell types was cultured in close physical contact and after trypsinisation, replating and culturing the cells for several hours in a high dilution, quantitative enzyme measurements with individual cells isolated from the mixture were carried out. From the distribution curve of the enzyme activities of the individual cells the conclusion could be drawn that a macromolecule, either the enzyme itself or DNA or mRNA, coding for that enzyme, is transferred from normal to mutant cells.  相似文献   
3.
4.
The osmotic and ion-specific components of salt-induced inhibition of leaf expansion growth were investigated in beans grown from 12 h to several days in either NaCl-containing solution cultures, an isosmotic concentrated macronutrient solution, or a vermiculite–compost mixture with low Na+ but high Cl availability. Inhibition of leaf expansion and leaf ABA increase was more intense in the NaCl than in the isosmotic macronutrient treatment. Root Na+ was highly correlated to inhibition of leaf expansion and leaf or xylem sap ABA. When Na+ was sequestered in soil, salinized plants showed no reduction in leaf expansion or ABA increase, regardless of the presence of high leaf Cl concentrations. Stomatal conductance exhibited an exponential relationship with the reciprocal value of xylem sap ABA. Our results indicate that an ion-specific effect caused by Na+ in roots may account for an ABA-mediated reponse of both stomatal closure and leaf expansion inhibition.  相似文献   
5.
Interaction of the Bacillus sphaericus mosquito larvicidal proteins   总被引:8,自引:0,他引:8  
Genes for 51.4- and 41.9-kDa insecticidal proteins of Bacillus sphaericus were separately cloned and expressed in Escherichia coli. Both proteins were required for toxicity. Approximately equal numbers of cells containing the 51.4- and 41.9-kDa proteins produced the greatest toxicity; excess 41.9-kDa protein did not affect toxicity, whereas excess 51.4-kDa protein reduced activity. Larvae were killed when 41.9-kDa protein was fed up to 24 h after the 51.4-kDa protein, but not when the order of feeding was reversed. Radiolabelled toxins bound in approximately equal amounts to the gastric caecum and posterior midgut of Culex quinquefasciatus larvae. Radiolabelled 51.4-kDa protein was rapidly degraded by ca. 12-13 kDa in the larval gut, while 41.9-kDa protein was degraded by 1-2 kDa. Nonreduced toxin extracted from B. sphaericus produced a band on SDS-PAGE of ca. 68-74 kDa that contained both 51.4- and 41.9-kDa proteins based on sequence analysis, and a band of ca. 51 kDa that contained primarily 41.9-kDa protein. Escherichia coli containing 51.4-kDa protein enhanced toxicity of the latter eluted SDS-PAGE band. These proteins may associate very strongly, and trace amounts of 51.4-kDa protein in preparations of 41.9-kDa protein from B. sphaericus may be responsible for the previously reported toxicity of the latter.  相似文献   
6.
Abstract: Many articulated brachiopods experience marked life habit variations during ontogeny because they experience their fluid environment at successively higher Reynolds numbers, and they can change the configuration of their inhalant and exhalant flows as body size increases. We show that the extant brachiopod Terebratalia transversa undergoes a substantial ontogenetic change in reorientation governed by rotation around the pedicle. T. transversa′s reorientation angle (maximum ability to rotate on the pedicle) decreases during ontogeny, from 180 degrees in juveniles to 10–20 degrees in individuals exceeding 5 mm, to complete cessation of rotation in individuals larger than 10 mm. Rotation ability is substantially reduced after T. transversa achieves the adult lophophore configuration and preferred orientation with respect to ambient water currents at a length of 2.5–5 mm. We hypothesize that the rotation angle of T. transversa is determined mainly by the position of ventral and dorsal points of attachment of dorsal pedicle muscles relative to the pedicle. T. transversa shows a close correlation between the ontogenetic change in reorientation angle and ontogeny of morphological traits that are related to points of attachment of dorsal pedicle muscles, although other morphological features can also limit rotation in the adult stage. The major morphological change in cardinalia shape and the observed reduction of rotation affect individuals 2.5–10 mm in length. The position of ventral insertions of dorsal pedicle muscles remains constant, but contraction of dorsal pedicle muscles is functionally handicapped because dorsal insertions shift away from the valve midline, rise above the dorsal valve floor, and become limited by a wide cardinal process early in ontogeny (<5 mm). The rate of increase of cardinal process width and of distance between dorsal pedicle muscle scars substantially decreases in the subadult stage (5–10 mm), and most of the cardinalia shell traits grow nearly isometrically in the adult stage (>10 mm). T. transversa attains smaller shell length in crevices than on exposed substrates. The proportion of small‐sized individuals and population density is lower on exposed substrates than in crevices, indicating higher juvenile mortality on substrates prone to grazing and physical disturbance. The loss of reorientation ability can be a consequence of morphological changes that strengthen substrate attachment and maximize protection against biotic or physical disturbance (1) by minimizing torques around the pedicle axis and/or (2) by shifting energy investments into attachment strength at the expense of the cost involved in reorientation.  相似文献   
7.
In order to evaluate the influence of the number of catches in pheromone-baited traps on the percentage of larval infestation, six delta traps equipped with sex attractant were placed in each of three regions in Central Greece (Farkadona, Farsala, Almyros) in cotton fields from 20 June until 30 September 1995. The collection of fruiting bodies took place weekly and the counting of adults in the traps was carried out each day. The population fluctuation in all three regions was similar with their peak during the first weeks of August. In Farkadona the infestation level was low (1% at the first sampling of August) with a maximum of 9% in the last sampling of September. In Farsala and Almyros, the infestation level was already high (10% and above) in early August. There was a significant positive linear correlation between the number of moth catches and the infestation percentage from first- and second-stage larvae on the first (R = 0694) and second (R = 0.7399) boll-feeding generations.  相似文献   
8.
9.
PARP-1 (poly(ADP-ribose) polymerases) modifies proteins with poly(ADP-ribose), which is an important signal for genomic stability. ADP-ribose polymers also mediate cell death and are degraded by poly(ADP-ribose) glycohydrolase (PARG). Here we show that the catalytic domain of PARG interacts with the automodification domain of PARP-1. Furthermore, PARG can directly down-regulate PARP-1 activity. PARG also interacts with XRCC1, a DNA repair factor that is recruited by DNA damage-activated PARP-1. We investigated the role of XRCC1 in cell death after treatment with supralethal doses of the alkylating agent MNNG. Only in XRCC1-proficient cells MNNG induced a considerable accumulation of poly(ADP-ribose). Similarly, extracts of XRCC1-deficient cells produced large ADP-ribose polymers if supplemented with XRCC1. Consequently, MNNG triggered in XRCC1-proficient cells the translocation of the apoptosis inducing factor from mitochondria to the nucleus followed by caspase-independent cell death. In XRCC1-deficient cells, the same MNNG treatment caused non-apoptotic cell death without accumulation of poly(ADP-ribose). Thus, XRCC1 seems to be involved in regulating a poly(ADP-ribose)-mediated apoptotic cell death.  相似文献   
10.
Potato plants (Solanum tuberosum L.) were grown in water culturein a controlled environment. Cooling (+8°C) of individualtubers decreased their growth rates and increased the growthrates of non-cooled tubers of the same plant. The carbohydrateconcentration in non-cooled and cooled tubers did not differsignificantly, but 14C-import from labelled photosynthate waslower in cooled than in non-cooled tubers. The markedly lowerconversion rate of ethanol-soluble 14C to starch in cooled,in comparison to non-cooled tubers, was not associated withsignificant differences in the in vitro activities of starchsynthase, ADPG-pyrophosphorylase and starch phosphorylase understandard assay conditions (+30°C). However, the Q10-valuesof the enzymes differed in vitro in the temperature range between30°C and 8°C, leading to a marked decrease in the activityratio of ADPG-pyrophosphorylase/starch phosphorylase in cooledtubers. In tubers differing in growth rates without manipulation, 14d after tuber initiation significant positive correlations werefound between 14C-concentration of tuber tissue and the in vitroactivities of starch synthase and ADPG-pyrophosphorylase anda significant negative correlation between 14C-concentrationand starch phosphorylase. In contrast, in tubers which wereanalysed 5 d after initiation, there were only small differencesbetween tubers in growth rate, 14C import and the activity ratioADPG-pyrophosphorylase/starch phosphorylase. From various directand indirect evidence it is concluded that the growth rate ofindividual tubers, and thus the sink strength, is at least inpart controlled by the activity of starch synthesizing enzymes. Key words: Potato tuber, cooling, starch synthesizing enzymes  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号