全文获取类型
收费全文 | 740篇 |
免费 | 61篇 |
专业分类
801篇 |
出版年
2024年 | 2篇 |
2023年 | 8篇 |
2022年 | 13篇 |
2021年 | 17篇 |
2020年 | 8篇 |
2019年 | 14篇 |
2018年 | 24篇 |
2017年 | 27篇 |
2016年 | 36篇 |
2015年 | 47篇 |
2014年 | 50篇 |
2013年 | 64篇 |
2012年 | 82篇 |
2011年 | 75篇 |
2010年 | 49篇 |
2009年 | 43篇 |
2008年 | 56篇 |
2007年 | 51篇 |
2006年 | 42篇 |
2005年 | 24篇 |
2004年 | 24篇 |
2003年 | 16篇 |
2002年 | 9篇 |
2001年 | 5篇 |
2000年 | 2篇 |
1999年 | 3篇 |
1998年 | 1篇 |
1997年 | 3篇 |
1996年 | 2篇 |
1990年 | 2篇 |
1989年 | 1篇 |
1971年 | 1篇 |
排序方式: 共有801条查询结果,搜索用时 93 毫秒
1.
2.
3.
Cerqueira SR Silva BL Oliveira JM Mano JF Sousa N Salgado AJ Reis RL 《Macromolecular bioscience》2012,12(5):591-597
The efficiency of the treatments involving CNS disorders is commonly diminished by the toxicity, reduced stability and lack of targeting of the administered neuroactive compounds. In this study, we have successfully multifunctionalized CMCht/PAMAM dendrimer nanoparticles by coupling the CD11b antibody and loading MP into the nanoparticles. The modification of the new antibody-conjugated nanoparticles was confirmed by S-TEM observation and (1) H NMR and FTIR spectroscopy. Cytotoxicity assays revealed that the conjugates did not affect the viability of both primary cultures of glial and microglial cells. Trace analyses of FITC-labelled nanoparticles revealed that the uptake of antibody-conjugated nanoparticles was conserved in microglial cells but significantly decreased in astrocytes and oligodendrocytes. Thus, this study demonstrates that antibody conjugation contributes to a modulation of the internalization of these nanocarriers by different cell types, which might be of relevance for specific targeting of CNS cell populations. 相似文献
4.
Vanderlei Folmer Nuno Pedroso Sílvia C.D.N. Lopes Luísa Cyrne 《生物化学与生物物理学报:生物膜》2008,1778(4):1141-1147
In Saccharomyces cerevisiae, the diffusion rate of hydrogen peroxide (H2O2) through the plasma membrane decreases during adaptation to H2O2 by means of a mechanism that is still unknown. Here, evidence is presented that during adaptation to H2O2 the anisotropy of the plasma membrane increases. Adaptation to H2O2 was studied at several times (15min up to 90min) by applying the steady-state H2O2 delivery model. For wild-type cells, the steady-state fluorescence anisotropy increased after 30min, or 60min, when using 2-(9-anthroyloxy) stearic acid (2-AS), or diphenylhexatriene (DPH) membrane probe, respectively. Moreover, a 40% decrease in plasma membrane permeability to H2O2 was observed at 15min with a concomitant two-fold increase in catalase activity. Disruption of the ergosterol pathway, by knocking out either ERG3 or ERG6, prevents the changes in anisotropy during H2O2 adaptation. H2O2 diffusion through the plasma membrane in S. cerevisiae cells is not mediated by aquaporins since the H2O2 permeability constant is not altered in the presence of the aquaporin inhibitor mercuric chloride. Altogether, these results indicate that the regulation of the plasma membrane permeability towards H2O2 is mediated by modulation of the biophysical properties of the plasma membrane. 相似文献
5.
Ocellatin‐PT antimicrobial peptides: High‐resolution microscopy studies in antileishmania models and interactions with mimetic membrane systems 下载免费PDF全文
Mayara Oliveira Ana Georgina Gomes‐Alves Carla Sousa Mariela Mirta Marani Alexandra Plácido Nuno Vale Cristina Delerue‐Matos Paula Gameiro Selma A. S. Kückelhaus Ana M. Tomas José Roberto S. A. Leite Peter Eaton 《Biopolymers》2016,105(12):873-886
Although the mechanism of action of antimicrobial peptides (AMPs) is not clear, they can interact electrostatically with the cell membranes of microorganisms. New ocellatin‐PT peptides were recently isolated from the skin secretion of Leptodactylus pustulatus. The secondary structure of these AMPs and their effect on Leishmania infantum cells, and on different lipid surface models was characterized in this work. The results showed that all ocellatin‐PT peptides have an α‐helix structure and five of them (PT3, PT4, PT6 to PT8) have leishmanicidal activity; PT1 and PT2 affected the cellular morphology of the parasites and showed greater affinity for leishmania and bacteria‐mimicking lipid membranes than for those of mammals. The results show selectivity of ocellatin‐PTs to the membranes of microorganisms and the applicability of biophysical methods to clarify the interaction of AMPs with cell membranes. 相似文献
6.
Ester B. M. Remmerswaal Paul L. Klarenbeek Nuno L. Alves Marieke E. Doorenspleet Barbera D. C. van Schaik Rebecca E. E. Esveldt Mirza M. Idu Ester M. M. van Leeuwen Nelly van der Bom-Baylon Antoine H. C. van Kampen Sven D. Koch Hanspeter Pircher Frederike J. Bemelman Anja ten Brinke Frank Baas Ineke J. M. ten Berge Rene A.W. van Lier Niek de Vries 《Journal of virology》2015,89(1):568-580
7.
U2 snRNP auxiliary factor (U2AF) is an essential heterodimeric splicing factor composed of two subunits, U2AF(65) and U2AF(35). During the past few years, a number of proteins related to both U2AF(65) and U2AF(35) have been discovered. Here, we review the conserved structural features that characterize the U2AF protein families and their evolutionary emergence. We perform a comprehensive database search designed to identify U2AF protein isoforms produced by alternative splicing, and we discuss the potential implications of U2AF protein diversity for splicing regulation. 相似文献
8.
9.
Nuno Borges Rie Matsumi Tadayuki Imanaka Haruyuki Atomi Helena Santos 《Journal of bacteriology》2010,192(1):191-197
Many of the marine microorganisms which are adapted to grow at temperatures above 80°C accumulate di-myo-inositol phosphate (DIP) in response to heat stress. This led to the hypothesis that the solute plays a role in thermoprotection, but there is a lack of definitive experimental evidence. Mutant strains of Thermococcus kodakarensis (formerly Thermococcus kodakaraensis), manipulated in their ability to synthesize DIP, were constructed and used to investigate the involvement of DIP in thermoadaptation of this archaeon. The solute pool of the parental strain comprised DIP, aspartate, and α-glutamate. Under heat stress the level of DIP increased 20-fold compared to optimal conditions, whereas the pool of aspartate increased 4.3-fold in response to osmotic stress. Deleting the gene encoding the key enzyme in DIP synthesis, CTP:inositol-1-phosphate cytidylyltransferase/CDP-inositol:inositol-1-phosphate transferase, abolished DIP synthesis. Conversely, overexpression of the same gene resulted in a mutant with restored ability to synthesize DIP. Despite the absence of DIP in the deletion mutant, this strain exhibited growth parameters similar to those of the parental strain, both at optimal (85°C) and supraoptimal (93.7°C) temperatures for growth. Analysis of the respective solute pools showed that DIP was replaced by aspartate. We conclude that DIP is part of the strategy used by T. kodakarensis to cope with heat stress, and aspartate can be used as an alternative solute of similar efficacy. This is the first study using mutants to demonstrate the involvement of compatible solutes in the thermoadaptation of (hyper)thermophilic organisms.Hyperthermophilic bacteria and archaea isolated from saline environments accumulate unusual organic solutes in response to osmotic as well as heat stress. Mannosylglycerate, mannosylglyceramide, di-myo-inositol phosphate, mannosyl-di-myo-inositol phosphate (DIP), diglycerol phosphate, and glycero-phospho-myo-inositol are examples of compatible solutes highly restricted to thermophiles and hyperthermophiles (27, 31). Our team has, over several years, examined the compatible solute composition in a large number of hyperthermophiles and their accumulation under stressful conditions. The data reveal a trend toward specialization of roles in thermoadaptation and osmoadaptation. Indeed, mannosylglycerate and diglycerol phosphate typically accumulate in response to increased NaCl concentration in the growth medium, whereas the levels of DIP and derivatives consistently increase at supraoptimal growth temperatures (11, 16, 17, 27, 31).DIP is widespread among extreme archaeal hyperthermophiles, such as Methanotorris igneus, Aeropyrum pernix, Stetteria hydrogenophila, Pyrodictium occultum, Pyrolobus fumarii, Archaeoglobus spp., and all the members of the Thermococcales examined thus far, except Palaeococcus ferrophilus (5, 7, 11, 13, 16, 18, 31). This organic solute has also been found in representatives of the two hyperthermophilic bacterial genera, Aquifex and Thermotoga (14, 17, 22).The specific chemical nature of solutes encountered in hyperthermophiles, together with their accumulation in response to elevated temperatures, led to the hypothesis that they play a role in thermoprotection of cellular components in vivo. However, there is a lack of convincing experimental evidence, such as that obtained with suitable mutants. Progress toward understanding the physiological functions of these solutes critically depends on two conditions: the availability of genetic tools to manipulate hyperthermophilic organisms and knowledge about the genes and enzymes implicated in the synthesis of these unusual solutes.Thermococcus kodakarensis (formerly Thermococcus kodakaraensis) is a member of the order Thermococcales with an optimal growth temperature of 85°C and is able to grow at temperatures up to 94°C in batch cultures. The NaCl concentration for optimal growth matches that of seawater (1). T. kodakarensis is the only marine hyperthermophile for which a number of genetic tools have been developed, including Escherichia coli-T. kodakarensis shuttle vectors and a reliable gene disruption system (19, 29, 32, 34). The genome of T. kodakarensis possesses a gene encoding CTP:inositol-1-phosphate cytidylyltransferase/CDP-inositol:inositol-1-phosphate transferase (IPCT/DIPPS), a key enzyme in DIP synthesis (2, 25, 26). This enzyme catalyzes the synthesis of CDP-inositol from CTP and inositol-1-phosphate as well as the transfer of the inositol group from CDP-inositol to a second molecule of inositol-1-phosphate to yield a phosphorylated form of DIP (2). Therefore, we set out to investigate whether DIP was involved in thermoadaptation of T. kodakarensis. A DIP-deficient mutant was constructed by deleting the IPCT/DIPPS gene; subsequently, this strain was complemented in this activity by inserting the gene under the control of a constitutive promoter, resulting in a construct with restored ability to synthesize DIP. The effects of heat and osmotic stress on the pattern of solute accumulation and on the growth profiles of the two mutants provided evidence for the involvement of DIP in thermoprotection. 相似文献
10.
Vidinha P Harper N Micaelo NM Lourenco NM da Silva MD Cabral JM Afonso CA Soares CM Barreiros S 《Biotechnology and bioengineering》2004,85(4):442-449
We studied the reaction between vinyl butyrate and 2-phenyl-1-propanol in acetonitrile catalyzed by Fusarium solani pisi cutinase immobilized on zeolites NaA and NaY and on Accurel PA-6. The choice of 2-phenyl-1-propanol was based on modeling studies that suggested moderate cutinase enantioselectivity towards this substrate. With all the supports, initial rates of transesterification were higher at a water activity (a(w)) of 0.2 than at a(w) = 0.7, and the reverse was true for initial rates of hydrolysis. By providing acid-base control in the medium through the use of solid-state buffers that control the parameter pH-pNa, which we monitored using an organo-soluble chromoionophoric indicator, we were able, in some cases, to completely eliminate dissolved butyric acid. However, none of the buffers used were able to improve the rates of transesterification relative to the blanks (no added buffer) when the enzyme was immobilized at an optimum pH of 8.5. When the enzyme was immobilized at pH 5 and exhibited only marginal activity, however, even a relatively acidic buffer with a pK(a) of 4.3 was able to restore catalytic activity to about 20% of that displayed for a pH of immobilization of 8.5, at otherwise identical conditions. As a(w) was increased from 0.2 to 0.7, rates of transesterification first increased slightly and then decreased. Rates of hydrolysis showed a steady increase in that a(w) range, and so did total initial reaction rates. The presence or absence of the buffers did not impact on the competition between transesterification and hydrolysis, regardless of whether the butyric acid formed remained as such in the reaction medium or was eliminated from the microenvironment of the enzyme through conversion into an insoluble salt. Cutinase enantioselectivity towards 2-phenyl-1-propanol was indeed low and was not affected by differences in immobilization support, enzyme protonation state, or a(w). 相似文献