全文获取类型
收费全文 | 467篇 |
免费 | 12篇 |
专业分类
479篇 |
出版年
2023年 | 3篇 |
2022年 | 8篇 |
2021年 | 8篇 |
2020年 | 7篇 |
2019年 | 7篇 |
2018年 | 8篇 |
2017年 | 4篇 |
2016年 | 11篇 |
2015年 | 21篇 |
2014年 | 21篇 |
2013年 | 29篇 |
2012年 | 40篇 |
2011年 | 27篇 |
2010年 | 15篇 |
2009年 | 12篇 |
2008年 | 24篇 |
2007年 | 12篇 |
2006年 | 14篇 |
2005年 | 20篇 |
2004年 | 12篇 |
2003年 | 8篇 |
2002年 | 10篇 |
2001年 | 8篇 |
2000年 | 5篇 |
1999年 | 3篇 |
1998年 | 6篇 |
1997年 | 4篇 |
1989年 | 4篇 |
1984年 | 4篇 |
1980年 | 3篇 |
1977年 | 5篇 |
1960年 | 4篇 |
1953年 | 3篇 |
1947年 | 2篇 |
1940年 | 2篇 |
1938年 | 4篇 |
1937年 | 2篇 |
1936年 | 9篇 |
1935年 | 5篇 |
1934年 | 2篇 |
1933年 | 8篇 |
1932年 | 9篇 |
1931年 | 9篇 |
1930年 | 2篇 |
1929年 | 7篇 |
1924年 | 2篇 |
1923年 | 3篇 |
1920年 | 2篇 |
1918年 | 3篇 |
1910年 | 2篇 |
排序方式: 共有479条查询结果,搜索用时 17 毫秒
1.
Background
Endothelial-Monocyte Activating Polypeptide (EMAP II) is a secreted protein with well-established anti-angiogenic activities. Intracellular EMAP II expression is increased during fetal development at epithelial/mesenchymal boundaries and in pathophysiologic fibroproliferative cells of bronchopulmonary dysplasia, emphysema, and scar fibroblast tissue following myocardial ischemia. Precise function and regulation of intracellular EMAP II, however, has not been explored to date.Methodology/Principal Findings
Here we show that high intracellular EMAP II suppresses cellular proliferation by slowing progression through the G2M cell cycle transition in epithelium and fibroblast. Furthermore, EMAP II binds to and is phosphorylated by Cdk1, and exhibits nuclear/cytoplasmic partitioning, with only nuclear EMAP II being phosphorylated. We observed that extracellular secreted EMAP II induces endothelial cell apoptosis, where as excess intracellular EMAP II facilitates epithelial and fibroblast cells migration.Conclusions/Significance
Our findings suggest that EMAP II has specific intracellular effects, and that this intracellular function appears to antagonize its extracellular anti-angiogenic effects during fetal development and pulmonary disease progression. 相似文献2.
Winstone N Wilson AJ Morrow G Boggiano C Chiuchiolo MJ Lopez M Kemelman M Ginsberg AA Mullen K Coleman JW Wu CD Narpala S Ouellette I Dean HJ Lin F Sardesai NY Cassamasa H McBride D Felber BK Pavlakis GN Schultz A Hudgens MG King CR Zamb TJ Parks CL McDermott AB 《Journal of virology》2011,85(18):9578-9587
DNA priming has previously been shown to elicit augmented immune responses when administered by electroporation (EP) or codelivered with a plasmid encoding interleukin-12 (pIL-12). We hypothesized that the efficacy of a DNA prime and recombinant adenovirus 5 boost vaccination regimen (DNA/rAd5) would be improved when incorporating these vaccination strategies into the DNA priming phase, as determined by pathogenic simian immunodeficiency virus SIVmac239 challenge outcome. The whole SIVmac239 proteome was delivered in 5 separate DNA plasmids (pDNA-SIV) by EP with or without pIL-12, followed by boosting 4 months later with corresponding rAd5-SIV vaccine vectors. Remarkably, after repeated low-dose SIVmac239 mucosal challenge, we demonstrate 2.6 and 4.4 log reductions of the median SIV peak and set point viral loads in rhesus macaques (RMs) that received pDNA-SIV by EP with pIL-12 compared to the median peak and set point viral loads in mock-immunized controls (P < 0.01). In 5 out of 6 infected RMs, strong suppression of viremia was observed, with intermittent "blips" in virus replication. In 2 RMs, we could not detect the presence of SIV RNA in tissue and lymph nodes, even after 13 viral challenges. RMs immunized without pIL-12 demonstrated a typical maximum of 1.5 log reduction in virus load. There was no significant difference in the overall magnitude of SIV-specific antibodies or CD8 T-cell responses between groups; however, pDNA delivery by EP with pIL-12 induced a greater magnitude of SIV-specific CD4 T cells that produced multiple cytokines. This vaccine strategy is relevant for existing vaccine candidates entering clinical evaluation, and this model may provide insights into control of retrovirus replication. 相似文献
3.
Adonis McQueen Lynn D. Blake Ala Azhari M. Trent Kemp Tommy W. McGaha Niranjan Namelikonda Randy W. Larsen Roman Manetsch Dennis E. Kyle 《Bioorganic & medicinal chemistry letters》2017,27(20):4597-4600
Primaquine (PQ) is the only commercially available drug that clears dormant liver stages of malaria and blocks transmission to mosquito vectors. Although an old drug, much remains to be known about the mechanism(s) of action. Herein we develop a fluorescent tagged PQ to discover cellular localization in the human malaria parasite, Plasmodium falciparum. Successful synthesis and characterization of a primaquine-coumarin fluorescent probe (PQCP) demonstrated potency equivalent to the parent drug and the probe was not cytotoxic to HepG2 carcinoma cells. Cellular localization was found primarily in the cytosol of the asexual erythrocytic and gametocyte stages of parasite development. 相似文献
4.
Buffalo is an economically important livestock species in Asia. Little is known about male germ line technology owing to lack of sufficient understanding regarding expression of germ- and somatic-cell specific-proteins in the testis. In this study, we identified UCHL-1 (PGP 9.5) and lectin- Dolichos biflorus agglutinin (DBA) as specific markers for spermatogonia in buffalo testis. Expression of germ-cell and pluripotency-specific proteins such as DDX4 (VASA) and POU5F1 (OCT3/4) were also present in spermatogonia. Interestingly, the expression of somatic cell-specific proteins such as VIMENTIN and GATA4 were also detected in germ cells. Using two-step enzymatic digestion followed by differential plating and Percoll density-gradient centrifugation, an approximately 55% spermatogonia-enriched cell population could be obtained from the prepubertal buffalo testis. Isolated spermatogonia could survive and proliferate in vitro in DMEM/F12 medium containing 10% fetal bovine serum in the absence of any specific growth factors for a week. Cultured spermatogonia showed DBA affinity and expressed DDX4 and POU5F1. These results may help to establish a long-term culture system for buffalo spermatogonia. 相似文献
5.
Abstract The 5′-O-(4,4′-dimethoxytrityl) and 5′-O-(tert-butyldimethylsilyl) derivatives of 2′-,3′-O-thiocarbonyl-6-azauridine and 2′,3′-O-thiocarbonyl-5-chlorouridine were synthesized from the parent nucleosides by reaction with 4, 4′-dimethoxytrityl chloride and tert-butyldimethylsilyl chloride, respectively, followed by treatment with 1,1′-thiocarbonyldiimidazole. Introduction of a 2′-,3′-double bond into the sugar ring by reaction of the 5′-protected 2′-,3′-O-thionocarbonates with 1, 3-dimethyl-2-phenyl-1, 3, 2-diazaphospholidiine was unsuccessful, but could be accomplished satisfactorily with trimethyl phosphite. Reactions were generally more successful with the 5′-silylated than with the 5′-tritylated nucleosides. Formation of 2′-,3′-O-thiocarbonyl derivatives proceeded in higher yield with 5′-protected 6-azauridines than with the corresponding 5-chlorouridines because of the propensity of the latter to form 2,2′-anhydro derivatives. In the reaction of 5′-O-(tert-butyldimethylsilyl)-2′-,3′-O-thiocarbonyl-6-azauridine with trimethyl phosphite, introduction of the double bond was accompanied by N3-methylation. However this side reaction was not a problem with 5′-O-(tert-butyldimethylsilyl)-2′-, 3′-O-thioarbonyl-5-chlorouridine. Treatment of 5′-O-(tert-butyldimethylsilyl)-2′-, 3′-didehydro-2′-,3′-dideoxy-6-azauridine with tetrabutylammonium fluoride followed by hydrogenation afforded 2′-,3′-dideoxy-6-azauridine. Deprotection of 5′-O-(tert-butyldimethylsilyl)-2′-, 3′-didehydro-2′-,3′-dideoxy-5-chlorouridine yielded 2′-,3′-didehydro-2′-,3′-dide-oxy-5-chlorouridine. 相似文献
6.
Kanika Narula Pooja Choudhary Sudip Ghosh Eman Elagamey Niranjan Chakraborty Subhra Chakraborty 《Proteomics》2019,19(3)
Modulation of plant immune system by extrinsic/intrinsic factors and host‐specific determinants fine‐tunes cellular components involving multiple organelles, particularly nucleus to mount resistance against pathogen attack. Rice blast, caused by hemibiotrophic fungus Magnaporthe oryzae, is one of the most devastating diseases that adversely affect rice productivity. However, the role of nuclear proteins and their regulation in response to M. oryzae remains unknown. Here, the nucleus‐associated immune pathways in blast‐resistant rice genotype are elucidated. Temporal analysis of nuclear proteome is carried out using 2‐DE coupled MS/MS analysis. A total of 140 immune responsive proteins are identified associated with nuclear reorganization, cell division, energy production/deprivation, signaling, and gene regulation. The proteome data are interrogated using correlation network analysis that identified significant functional modules pointing toward immune‐related coinciding processes through a common mechanism of remodeling and homeostasis. Novel clues regarding blast resistance include nucleus‐associated redox homeostasis and glycolytic enzyme–mediated chromatin organization which manipulates cell division and immunity. Taken together, the study herein provides evidence that the coordination of nuclear function and reprogramming of host translational machinery regulate resistance mechanism against blast disease. 相似文献
7.
Prasad Archana Patel Preeti Pandey Shatrujeet Niranjan Abhishek Misra Pratibha 《Protoplasma》2020,257(2):561-572
Protoplasma - Growth and production kinetics of three important glycoalkaloids viz. α-solanine, solanidine, and solasodine in two contrasting prickly and prickleless plants of Solanum viarum... 相似文献
8.
Bhushan D Pandey A Chattopadhyay A Choudhary MK Chakraborty S Datta A Chakraborty N 《Journal of proteome research》2006,5(7):1711-1720
The extracellular matrix (ECM) or cell wall is a dynamic system and serves as the first line mediator in cell signaling to perceive and transmit extra- and intercellular signals in many pathways. Although ECM is a conserved compartment ubiquitously present throughout evolution, a compositional variation does exist among different organisms. ECM proteins account for 10% of the ECM mass, however, comprise several hundreds of different molecules with diverse functions. To understand the function of ECM proteins, we have developed the cell wall proteome of a crop legume, chickpea (Cicer arietinum). This comprehensive overview of the proteome would provide a basis for future comparative proteomic efforts for this important crop. Proteomic analyses revealed new ECM proteins of unknown functions vis-à-vis the presence of many known cell wall proteins. In addition, we report here evidence for the presence of unexpected proteins with known biochemical activities, which have never been associated with ECM. 相似文献
9.
Guangxi Wu He Zhao Chenhao Li Menaka Priyadarsani Rajapakse Wing Cheong Wong Jun Xu Charles W. Saunders Nancy L. Reeder Raymond A. Reilman Annika Scheynius Sheng Sun Blake Robert Billmyre Wenjun Li Anna Floyd Averette Piotr Mieczkowski Joseph Heitman Bart Theelen Markus S. Schr?der Paola Florez De Sessions Geraldine Butler Sebastian Maurer-Stroh Teun Boekhout Niranjan Nagarajan Thomas L. Dawson Jr. 《PLoS genetics》2015,11(11)
Malassezia is a unique lipophilic genus in class Malasseziomycetes in Ustilaginomycotina, (Basidiomycota, fungi) that otherwise consists almost exclusively of plant pathogens. Malassezia are typically isolated from warm-blooded animals, are dominant members of the human skin mycobiome and are associated with common skin disorders. To characterize the genetic basis of the unique phenotypes of Malassezia spp., we sequenced the genomes of all 14 accepted species and used comparative genomics against a broad panel of fungal genomes to comprehensively identify distinct features that define the Malassezia gene repertoire: gene gain and loss; selection signatures; and lineage-specific gene family expansions. Our analysis revealed key gene gain events (64) with a single gene conserved across all Malassezia but absent in all other sequenced Basidiomycota. These likely horizontally transferred genes provide intriguing gain-of-function events and prime candidates to explain the emergence of Malassezia. A larger set of genes (741) were lost, with enrichment for glycosyl hydrolases and carbohydrate metabolism, concordant with adaptation to skin’s carbohydrate-deficient environment. Gene family analysis revealed extensive turnover and underlined the importance of secretory lipases, phospholipases, aspartyl proteases, and other peptidases. Combining genomic analysis with a re-evaluation of culture characteristics, we establish the likely lipid-dependence of all Malassezia. Our phylogenetic analysis sheds new light on the relationship between Malassezia and other members of Ustilaginomycotina, as well as phylogenetic lineages within the genus. Overall, our study provides a unique genomic resource for understanding Malassezia niche-specificity and potential virulence, as well as their abundance and distribution in the environment and on human skin. 相似文献
10.