首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   1篇
  23篇
  2017年   1篇
  2008年   2篇
  2007年   3篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1990年   2篇
  1971年   1篇
  1969年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
Silicon and heavy metal tolerance of higher plants   总被引:42,自引:0,他引:42  
The heavy metal tolerant Cardaminopsis halleri, grown on Zn and Cu polluted soil, showed electron dense metal containing precipitates (Zn, Cu, Sn, Fe, Al) on the leaf surface, in the intercellular spaces (Zn, Cu, Sn), the cell walls and the cell wall thickenings of the xylem vessels (Zn, traces of Cu and Fe). Large amounts of Zn were measured in the vacuoles, the main storage compartment for this metal in Cardarminopsis. The cytoplasm and nuclei contained small precipitates, including mainly Zn and Si. As shown by ESI Zn was co-localized with Si in these structures. The EEL-spectra of the cytoplasmic precipitates corresponded with the spectra of Zn-silicate. Besides Zn-silicate, electron translucent structures in the cytoplasm were identified as SiO2 by their EEL spectra. It was concluded that in the cytoplasm of Cardaminopsis Zn is transiently accumulated as silicate, being slowly degraded to SiO2. Zn is translocated into the vacuole and accumulated in an unknown form. A second Si and Zn-uptake mechanism was found, excluding a membrane and cytoplasm passage. Pinocytotic vesicles, formed by the plasmamembrane and the tonoplast, enable a direct translocation of Si and Zn from extracellular compartments into the vacuole. The formation of Zn-silicate is part of the heavy metal tolerance mechanism and may be responsible for the amelioration of the Zn toxicity in Cardaminopsis.  相似文献   
2.
Summary Differential quenching of -emission affects strongly the analysis of receptor distribution patterns in quantitative receptor autoradiography with tritiated ligands. Different methods for the quenching correction have been described in the past, but some of these are of limited value, if a detailed anatomical parcellation is necessary. Other methods correct exclusively local variations in lipid concentration, which is an important, but only one of several factors causing quenching. A new method for the measurement of quenching (or autoradiographic efficiency) is presented, which permits an anatomically detailed and direct determination of the total quenching without lipid extraction procedures. This method is based on the measurement of autoradiographic efficiency in cryostat sections homogeneously labeled with tritiated formaldehyde by an underlying gelatine section containing this labeled compound. Regional and layer specific measurements of autoradiographic efficiency in cortical and subcortical regions of the human and rat brain are reported. A significant correlation was found between the density of myelin and autoradiographic efficiency but other factors were also shown to influence differential quenching. The use of the here presented correction procedure leads to revisions of the laminar distribution patterns reported for different receptors in human and rat cortical areas. Our results show, that a complete quenching correction is necessary for the mapping of receptor distributions with tritiated ligands.  相似文献   
3.
Lubaretz O  Zur Nieden U 《Planta》2002,215(2):220-228
Plant small heat-stress proteins (sHSPs) have been shown to be expressed not only after exposure to elevated temperatures, but also at particular developmental stages such as embryogenesis, microsporogenesis, and fruit maturation. This paper presents new data on the occurrence of sHSPs in vegetative tissues, their tissue-specific distribution, and cellular localization. We have found sHSPs in 1-year-old twigs of Acer platanoides L. and Sambucus nigra L. and in the liana Aristolochia macrophylla Lamk. exclusively in the winter months. In tendrils of Aristolochia, sHSPs were localized in vascular cambium cells. After budding, in spring, these proteins were no longer present. Furthermore, accumulation of sHSPs was demonstrated in tubers and bulbs of Allium cepa L., Amaryllis ( Hippeastrum hybridum hort.), Crocus albiflorus L., Hyacinthus orientalis L., Narcissus pseudonarcissus L., Tulipa gesneriana L., and Solanum tuberosum L. (potato). In potato tubers and bulb scales of Narcissus the stress proteins were localized in the central vacuoles of storage parenchyma cells. In order to obtain more information on a possible functional correlation between storage proteins and sHSPs, the accumulation of both types of protein in tobacco seeds during seed ripening and germination was monitored. The expression of sHSPs and globulins started simultaneously at about the 17th day after anthesis. During seed germination the sHSPs disappeared in parallel with the storage proteins. Furthermore, in embryos of transgenic tobacco plants, which do not contain any protein bodies or storage proteins, no sHSPs were found. Thus, the occurrence of sHSPs in perennial plant storage organs seems to be associated with the presence of storage proteins.  相似文献   
4.
5.
Increasing attention has been drawn towards pluripotent embryonic stem cells (ESCs) and their potential use as the primary material in various tissue engineering applications. Successful clinical implementation of this technology would require a quality controlled reproducible culture system for the expansion of the cells to be used in the generation of functional tissues. Recently, we showed that suspension bioreactors could be used in the regulated large-scale expansion of highly pluripotent murine ESCs. The current study illustrates that these bioreactor protocols can be adapted for long term culture and that murine ESC cultures remain highly undifferentiated, when serially passaged in suspension bioreactors for extended periods. Flow cytometry analysis and gene expression profiles of several pluripotency markers, in addition to colony and embryoid body (EB) formation tests were conducted at the start and end of the experiment and all showed that the ESC cultures remained highly undifferentiated over extended culture time in suspension. In vivo teratoma formation and in vitro differentiation into neural, cardiomyocyte, osteoblast and chondrocyte lineages, performed at the end of the long term culture, further supported the presence of functional and undifferentiated ESCs in the expanded population. Overall, this system enables the controlled expansion of highly pluripotent murine ESC populations.  相似文献   
6.
7.
In embryonic stem (ES) cells, leukemia inhibitory factor (LIF)/STAT3, wnt and nodal/activin signaling are mainly active to control pluripotency during expansion. To maintain pluripotency, ES cells are typically cultured on feeder cells of varying origins. Murine ES cells are commonly cultured on murine embryonic fibroblasts (MEFs), which senesce early and must be frequently prepared. This process is laborious and leads to batch variation presenting a challenge for high-throughput ES cell expansion. Although some cell lines can be sustained by exogenous LIF, this method is costly. We present here a novel and inexpensive culture method for expanding murine ES cells on human foreskin fibroblast (HFF) feeders. After 20 passages on HFFs without LIF, ES cell lines showed normal expression levels of pluripotency markers, maintained a normal karyotype and retained the ability to contribute to the germline. As HFFs do not senesce for at least 62 passages, they present a vast supply of feeders.  相似文献   
8.
9.
We report on the stress-independent, tissue-specific expression of the heat-stress protein HSP17 in developing seeds of different plant species and on its intracellular localization. Though HSP17 expression during seed development seems to be a general phenomenon, the isoform patterns, the relative amounts in embryonic tissues and the intracellular localization show species-specific variations. In contrast to the results on the stressinduced protein forming large cytoplasmic aggregates (heat stress granules) the developmentally expressed HSP17 is mainly found in nuclei. But in addition, a considerable part is also detected in protein bodies of mature seeds of Lycopersicon esculentum and Vicia faba, but not of Zea mays. The mechanism of this transition into the vacuolar compartment remains to be investigated.Abbreviations 2D two-dimensional - HSE heat shock elements - HSP heat stress protein  相似文献   
10.
Endoplasmic reticular Ca(2+) stores, instrumental for intra- and intercellular calcium signalling, can be depleted by different receptor agonists. In the present study, the functional status of ER Ca(2+) stores was probed by cyclopiazonic acid (CPA, 10-30 microM, inhibitor of SERCA-dependent ER Ca(2+) uptake) and/or caffeine (20 mM, ryanodine receptor activator) in astrocytes and neurons of rat and mouse acute hippocampal brain slices (Stratum radiatum, Stratum moleculare), and in cultured astrocytes, using confocal microscopy and conventional Ca(2+) imaging. Astrocytes and neurons in situ, identified by their Ca(2+) response in K(+)-free saline (Dallwig and Deitmer [J. Neurosci. Methods 116 (2002) 77]), had a resting cytosolic Ca(2+) level of 105 and 157 nM, respectively (P<0.05). CPA evoked a Ca(2+) transient, which was faster and larger in neurons than in astrocytes, indicating larger Ca(2+) leak of neuronal Ca(2+) stores. Caffeine evoked a Ca(2+) rise in most neurons (>80%), but only in less than 40% of astrocytes. The glial Ca(2+) transients in the presence of caffeine had a large and variable delay (>50 s), as compared to those in neurons (< or =10 s), and appeared to be spontaneous and/or secondary to the neuronal Ca(2+) response, leading to release of neuronal transmitters. Astrocytes in culture responded to CPA, but never to caffeine with a Ca(2+) rise. Our results indicate that astrocytes, in contrast to neurons, lack caffeine-sensitive Ca(2+) stores, and have a relatively smaller leak from CPA-sensitive Ca(2+) stores than neurons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号