首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   384篇
  免费   35篇
  国内免费   4篇
  423篇
  2022年   6篇
  2021年   4篇
  2020年   8篇
  2019年   2篇
  2018年   6篇
  2017年   3篇
  2016年   11篇
  2015年   16篇
  2014年   19篇
  2013年   25篇
  2012年   24篇
  2011年   19篇
  2010年   17篇
  2009年   16篇
  2008年   19篇
  2007年   18篇
  2006年   13篇
  2005年   16篇
  2004年   15篇
  2003年   15篇
  2002年   10篇
  2001年   16篇
  2000年   13篇
  1999年   7篇
  1998年   6篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1993年   2篇
  1992年   2篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1988年   5篇
  1987年   5篇
  1986年   4篇
  1985年   3篇
  1984年   7篇
  1983年   10篇
  1982年   6篇
  1981年   6篇
  1980年   3篇
  1979年   6篇
  1978年   5篇
  1975年   2篇
  1973年   1篇
  1970年   1篇
  1969年   2篇
  1968年   7篇
  1967年   1篇
排序方式: 共有423条查询结果,搜索用时 15 毫秒
1.
24-Keto-1,25-dihydroxyvitamin D3 has been identified as an intestinal metabolite of 1,25-dihydroxyvitamin D3 by ultraviolet absorbance, mass spectroscopy, and chemical reactivity. The metabolite was produced from 1,25-dihydroxyvitamin D3 and 1,24R,25-trihydroxyvitamin D3 in rat intestinal mucosa homogenates. 24-Keto-1,25-dihydroxyvitamin D3 is present in vivo in the plasma and small intestinal mucosa of rats fed a stock diet, receiving no exogenous 1,25-dihydroxyvitamin D3, and in the plasma and small intestinal mucosa of rats dosed chronically with 1,25-dihydroxyvitamin D3. 24-Keto-1,25-dihydroxyvitamin D3 has affinity equivalent to 1,24R,25-trihydroxyvitamin D3 for the 3.7 S cytosolic receptor specific for 1,25-dihydroxyvitamin D3 in the intestine and thymus. In cytosolic preparations contaminated with the 5 S vitamin D-binding protein, both metabolites are about 7-fold less potent than 1,25-dihydroxyvitamin D3. In contrast, in cytosolic preparations largely free of the 5 S binding protein, both metabolites are equipotent with the parent compound. No evidence was obtained supporting a substantial presence of 23-keto-1,25-dihydroxyvitamin D3 in vivo; nor was the latter compound generated in detectable amounts from 1,25-dihydroxyvitamin D3 by intestinal homogenates. Thus, C-24 oxidation is a significant pathway of intestinal 1,25-dihydroxyvitamin D3 metabolism that produces metabolites with high affinity for the cytosolic receptor which mediates vitamin D action.  相似文献   
2.
Cytosolic alcohol dehydrogenase in the deermouse is coded by a single genetic locus and a strain of the deermouse which is alcohol dehydrogenase negative exists. These two strains of the deermouse were used to extend insight into the role of cytosolic alcohol dehydrogenases in the conversion of retinol into retinoic acid. Retinoic acid synthesis from physiological concentrations of retinol (7.5 microM) with cytosol from the alcohol dehydrogenase negative deermouse was 13% (liver), 14% (kidney), 60% (testes), 78% (lung), and 100% (small intestinal mucosa) of that observed with cytosol from the positive deermouse. The rates in the negative strain ranged from 0.3 to 0.7 nmol/h/mg protein: sufficient to fulfill cellular needs for retinoic acid. Ten millimolar 4-methylpyrazole inhibited retinoic acid synthesis 92, 94, 26, and 30% in kidney, liver, lung, and testes of the positive deermouse, respectively, but only 50, 30, 0, and 0% in the same tissues from the negative deermouse. Ethanol (300 mM) did not inhibit retinoic acid synthesis in kidney cytosol from the negative strain. Therefore multiple cytosolic dehydrogenases, including alcohol dehydrogenases, contribute to retinol metabolism in vitro. The only enzyme(s) likely to be physiologically significant to retinoic acid synthesis in vivo, however, is the class of dehydrogenase, distinct from ethanol dehydrogenase, that is common to both the positive and the negative deermouse. This conclusion is supported by the data described above, the kinetics of retinoic acid synthesis and retinal reduction in kidney cytosol from the negative deermouse, and the very existence of the alcohol dehydrogenase negative deermouse. This work also shows that microsomes inhibit the cytosolic conversion of retinol into retinoic acid and that the synthesis of retinal, a retinoid that has no known function outside of the eye, does not reflect the ability or capacity of a sample to synthesize retinoic acid.  相似文献   
3.
The results of normal mode calculations on the beta 4.4, beta 6.3, beta 5.6, and beta 7.2 structures of gramicidin A are compared with infrared and Raman spectra of crystalline native, crystalline Cs+-bound, and vesicle-bound gramicidin A. The observed frequencies and frequency splittings are in good agreement with an assignment of beta 5.6, beta 7.2, and beta 6.3 structures, respectively, to the gramicidin A molecules in the above three systems.  相似文献   
4.
5.
Senescence of adipose precursor cells (APC) impairs adipogenesis, contributes to the age‐related subcutaneous adipose tissue (SAT) dysfunction, and increases risk of type 2 diabetes (T2D). First‐degree relatives of T2D individuals (FDR) feature restricted adipogenesis, reflecting the detrimental effects of APC senescence earlier in life and rendering FDR more vulnerable to T2D. Epigenetics may contribute to these abnormalities but the underlying mechanisms remain unclear. In previous methylome comparison in APC from FDR and individuals with no diabetes familiarity (CTRL), ZMAT3 emerged as one of the top‐ranked senescence‐related genes featuring hypomethylation in FDR and associated with T2D risk. Here, we investigated whether and how DNA methylation changes at ZMAT3 promote early APC senescence. APC from FDR individuals revealed increases in multiple senescence markers compared to CTRL. Senescence in these cells was accompanied by ZMAT3 hypomethylation, which caused ZMAT3 upregulation. Demethylation at this gene in CTRL APC led to increased ZMAT3 expression and premature senescence, which were reverted by ZMAT3 siRNA. Furthermore, ZMAT3 overexpression in APC determined senescence and activation of the p53/p21 pathway, as observed in FDR APC. Adipogenesis was also inhibited in ZMAT3‐overexpressing APC. In FDR APC, rescue of ZMAT3 methylation through senolytic exposure simultaneously downregulated ZMAT3 expression and improved adipogenesis. Interestingly, in human SAT, aging and T2D were associated with significantly increased expression of both ZMAT3 and the P53 senescence marker. Thus, DNA hypomethylation causes ZMAT3 upregulation in FDR APC accompanied by acquisition of the senescence phenotype and impaired adipogenesis, which may contribute to FDR predisposition for T2D.  相似文献   
6.
7.
High affinity, retinoid-specific binding proteins chaperone retinoids to manage their transport and metabolism. Proposing mechanisms of retinoid transfer between these binding proteins and membrane-associated retinoid-metabolizing enzymes requires insight into enzyme topology. We therefore determined the topology of mouse retinol dehydrogenase type 1 (Rdh1) and cis-retinoid androgen dehydrogenase type 1 (Crad1) in the endoplasmic reticulum of intact mammalian cells. The properties of Rdh1 were compared with a chimera with a luminal signaling sequence (11beta-hydroxysteroid dehydrogenase (11beta-HSD1)(1-41)/Rdh1(23-317); the green fluorescent protein (GFP) fusion proteins Rdh1(1-22)/GFP, Crad1(1-22)/GFP, and 11beta-HSD1(1-41)/GFP; and signaling sequence charge difference mutants using confocal immunofluorescence, antibody access, proteinase K sensitivity, and deglycosylation assays. An N-terminal signaling sequence of 22 residues, consisting of a hydrophobic helix ending in a net positive charge, anchors Rdh1 and Crad1 in the endoplasmic reticulum facing the cytoplasm. Mutating arginine to glutamine in the signaling sequence did not affect topology. Inserting one or two arginine residues near the N terminus of the signaling sequence caused 28-95% inversion from cytoplasmic to luminal, depending on the net positive charge remaining at the C terminus of the signaling sequence; e.g. the mutant L3R,L5R,R16Q,R19Q,R21Q faced the lumen. Experiments with N- and C-terminal epitope-tagged Rdh1 and molecular modeling indicated that a hydrophobic helix-turn-helix near the C terminus of Rdh1 (residues 289-311) projects into the cytoplasm. These data provide insight into the features necessary to orient type III (reverse signal-anchor) proteins and demonstrate that Rdh1, Crad1, and other short-chain dehydrogenases/reductases, which share similar N-terminal signaling sequences such as human Rdh5 and mouse Rdh4, orient with their catalytic domains facing the cytoplasm.  相似文献   
8.
The retinol dehydrogenase Rdh10 catalyzes the rate-limiting reaction that converts retinol into retinoic acid (RA), an autacoid that regulates energy balance and reduces adiposity. Skeletal muscle contributes to preventing adiposity, by consuming nearly half the energy of a typical human. We report sexually dimorphic differences in energy metabolism and muscle function in Rdh10+/− mice. Relative to wild-type (WT) controls, Rdh10+/− males fed a high-fat diet decrease reliance on fatty-acid oxidation and experience glucose intolerance and insulin resistance. Running endurance decreases 40%. Rdh10+/− females fed this diet increase fatty acid oxidation and experience neither glucose intolerance nor insulin resistance. Running endurance increases 220%. We therefore assessed RA function in the mixed-fiber type gastrocnemius muscles (GM), which contribute to running, rather than standing, and are similar to human GM. RA levels in Rdh10+/− male GM decrease 38% relative to WT. Rdh10+/− male GM increase expression of Myog and reduce Eif6 mRNAs, which reduce and enhance running endurance, respectively. Cox5A, complex IV activity, and ATP decrease. Increased centralized nuclei reveal existence of muscle malady and/or repair in GM fibers. Comparatively, RA in Rdh10+/− female GM decreases by less than half the male decrease, from a more modest decrease in Rdh10 and an increase in the estrogen-induced retinol dehydrogenase Dhrs9. Myog mRNA decreases. Cox5A, complex IV activity, and ATP increase. Centralized GM nuclei do not increase. We conclude that Rdh10/RA affects whole body energy use and insulin resistance partially through sexual dimorphic effects on skeletal muscle gene expression, structure, and mitochondria activity.  相似文献   
9.
In recent years, the diagnosis of cardiovascular disease (CVD) has increased its potential, also thanks to mass spectrometry (MS) proteomics. Modern MS proteomics tools permit analyzing a variety of biological samples, ranging from single cells to tissues and body fluids, like plasma and urine. This approach enhances the search for informative biomarkers in biological samples from apparently healthy individuals or patients, thus allowing an earlier and more precise diagnosis and a deeper comprehension of pathogenesis, development and outcome of CVD to further reduce the enormous burden of this disease on public health. In fact, many differences in protein expression between CVD‐affected and healthy subjects have been detected, but only a few of them have been useful to establish clinical biomarkers because they did not pass the verification and validation tests. For a concrete clinical support of MS proteomics to CVD, it is, therefore, necessary to: ameliorate the resolution, sensitivity, specificity, throughput, precision, and accuracy of MS platform components; standardize procedures for sample collection, preparation, and analysis; lower the costs of the analyses; reduce the time of biomarker verification and validation. At the same time, it will be fundamental, for the future perspectives of proteomics in clinical trials, to define the normal protein maps and the global patterns of normal protein levels, as well as those specific for the different expressions of CVD. J. Cell. Biochem. 114: 7–20, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
10.
Differential scanning calorimetric (DSC), circular dichroism (CD) and molecular mechanics studies have been performed on two triple helices of DNA. The target duplex consists of 16 base pairs in alternate sequence of the type 5′-(purine)m(pyrimidine)m-3′. In both the triplexes, the third oligopyrimidine strand crosses the major groove at the purine–pyrimidine junction, with a simultaneous binding of the adjacent purine tracts on alternate strands of the Watson–Crick duplex. The switch is ensured by a non-nucleotide linker, the 1,2,3 propanetriol residue, that joins two 3′–3′ phosphodiester ends. The third strands differ from each other for a nucleotide in the junction region. The resulting triple helices were termed 14-mer-PXP and 15-mer-PXP (where P=phosphate and X=1,2,3-propanetriol residue) according to the number of nucleotides that compose the third strand. DSC data show two independent processes: the first corresponding to the dissociation of the third strand from the target duplex, the second to the dissociation of the double helix in two single strands. The two triple helices show the same stability at pH 6.6. At pH 6.0, the 15-mer-PXP triplex is thermodynamically more stable than the 14-mer-PXP triplex. Thermodynamic data are discussed in relation to structural models. The results are useful when considering the design of oligonucleotides that can bind in an antigene approach to the DNA for therapeutic purposes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号