首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
  11篇
  2019年   2篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Clearcutting and other forest disturbances perturb carbon, water, and energy balances in significant ways, with corresponding influences on Earth's climate system through biogeochemical and biogeophysical effects. Observations are needed to quantify the precise changes in these balances as they vary across diverse disturbances of different types, severities, and in various climate and ecosystem type settings. This study combines eddy covariance and micrometeorological measurements of surface‐atmosphere exchanges with vegetation inventories and chamber‐based estimates of soil respiration to quantify how carbon, water, and energy fluxes changed during the first 3 years following forest clearing in a temperate forest environment of the northeastern US. We observed rapid recovery with sustained increases in gross ecosystem productivity (GEP) over the first three growing seasons post‐clearing, coincident with large and relatively stable net emission of CO2 because of overwhelmingly large ecosystem respiration. The rise in GEP was attributed to vegetation changes not environmental conditions (e.g., weather), but attribution to the expansion of leaf area vs. changes in vegetation composition remains unclear. Soil respiration was estimated to contribute 44% of total ecosystem respiration during summer months and coarse woody debris accounted for another 18%. Evapotranspiration also recovered rapidly and continued to rise across years with a corresponding decrease in sensible heat flux. Gross short‐wave and long‐wave radiative fluxes were stable across years except for strong wintertime dependence on snow covered conditions and corresponding variation in albedo. Overall, these findings underscore the highly dynamic nature of carbon and water exchanges and vegetation composition during the regrowth following a severe forest disturbance, and sheds light on both the magnitude of such changes and the underlying mechanisms with a unique example from a temperate, deciduous broadleaf forest.  相似文献   
2.
Doubled haploid technologies have become key tools for plant breeding. Using these techniques, the speed and efficiency of plant improvement processes can be significantly enhanced. Anther culture-based technologies have the potential to regenerate large numbers of doubled haploid plants without colchicine treatment. In an attempt to elucidate the influence of phytohormones on non-directly induced chromosome doubling, two synthetic auxins, 2,4-D and centrophenoxine, were tested in a wheat anther culture approach. Whereas the induction of androgenic embryo-like structures (ELSs) was efficient for both auxins, we observed a significantly higher frequency of chromosome doubling when using 2,4-D than when using centrophenoxine. When 2,4-D was added to the induction medium, a positive correlation between the size of ELSs and their ploidy level was detected by flow cytometry. The morphological selection of ELSs, a process that was included in routine operations of the method without significantly extending the input of time and effort, facilitates the production of fertile DH plants with a frequency of 60 %. Our findings may contribute to a more efficient production of doubled haploid wheat plants using a colchicine-free anther culture approach.  相似文献   
3.
The Streptomyces phage phiC31 integrase was tested for its feasibility in excising transgenes from the barley genome through site-specific recombination. We produced transgenic barley plants expressing an active phiC31 integrase and crossed them with transgenic barley plants carrying a target locus for recombination. The target sequence involves a reporter gene encoding green fluorescent protein (GFP), which is flanked by the attB and attP recognition sites for the phiC31 integrase. This sequence disruptively separates a gusA coding sequence from an upstream rice actin promoter. We succeeded in producing site-specific recombination events in the hybrid progeny of 11 independent barley plants carrying the above target sequence after crossing with plants carrying a phiC31 expression cassette. Some of the hybrids displayed fully executed recombination. Excision of the GFP gene fostered activation of the gusA gene, as visualized in tissue of hybrid plants by histochemical staining. The recombinant loci were detected in progeny of selfed F1, even in individuals lacking the phiC31 transgene, which provides evidence of stability and generative transmission of the recombination events. In several plants that displayed incomplete recombination, extrachromosomal excision circles were identified. Besides the technical advance achieved in this study, the generated phiC31 integrase-expressing barley plants provide foundational stock material for use in future approaches to barley genetic improvement, such as the production of marker-free transgenic plants or switching transgene activity.  相似文献   
4.
Engineering traits by the assembly of non‐functional gene products is a promising tool for modern plant biotechnology. In this article, we describe the establishment of male sterility and herbicide resistance in wheat (Triticum aestivum) by complementing inactive precursor protein fragments through a split intein system. N‐ and C‐terminal fragments of a barnase gene from Bacillus amyloliquifaciens were fused to intein sequences from the Synechocystis sp. gene DnaB and delivered into the wheat genome via biolistic particle bombardment. Both barnase fragments were expressed under the control of a tapetum‐specific promoter. High efficiency of the split barnase system was achieved by introducing GGGGS linkers between the fusion domains of the assembled protein. Depending on the vector version that was transformed, up to 51% of primary transformed plants produced sterile pollen. In the F1 progeny, the male‐sterile phenotype segregated with both barnase gene fragments. Expression of the cytotoxic barnase in the tapetum did not apparently affect the vegetative phenotype and remained stable under increased temperatures. In addition, the reconstitution of sulphonylurea resistance was achieved by DnaE intein‐mediated assembly of a mutated acetolactate synthase (ALS) protein from rice. The impacts of the technical advances revealed in this study on the concepts for trait control, transgene containment and hybrid breeding are discussed.  相似文献   
5.
Complete uniparental chromosome elimination occurs in several interspecific hybrids of plants. We studied the mechanisms underlying selective elimination of the paternal chromosomes during the development of wheat (Triticum aestivum) x pearl millet (Pennisetum glaucum) hybrid embryos. All pearl millet chromosomes were eliminated in a random sequence between 6 and 23 d after pollination. Parental genomes were spatially separated within the hybrid nucleus, and pearl millet chromatin destined for elimination occupied peripheral interphase positions. Structural reorganization of the paternal chromosomes occurred, and mitotic behavior differed between the parental chromosomes. We provide evidence for a novel chromosome elimination pathway that involves the formation of nuclear extrusions during interphase in addition to postmitotically formed micronuclei. The chromatin structure of nuclei and micronuclei is different, and heterochromatinization and DNA fragmentation of micronucleated pearl millet chromatin is the final step during haploidization.  相似文献   
6.
Site-specific recombination systems are becoming an important tool for the genetic modification of crop plants. Here we report the functional expression of the Streptomyces phage-derived phiC31 recombinase (integrase) in wheat. T-DNA constructs containing a phiC31 integrase transgene were stably transformed into wheat plants via particle gun bombardment. A plant-virus-based assay system was used to monitor the site-specific recombination activity of the recombinant integrase protein in vivo. We established several independent doubled haploid (DH) inbred lines that constitutively express an active integrase enzyme without any apparent detrimental effects on plant growth and development. The potential of phiC31 integrase expression in crop plants related to transgene control technologies or hybrid breeding systems is discussed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. M. Rubtsova and K. Kempe contributed equally to the paper.  相似文献   
7.
The successful use of transgenic plants depends on the strong and stable expression of the heterologous genes. In this study, three introns (PSK7-i1 and PSK7-i3 from Petunia and UBQ10-i1 from Arabidopsis) were tested for their ability to enhance the tapetum-specific expression of a split barnase transgene. We also analyzed the effects of introducing multiple copies of flexible peptide linkers that bridged the fusion domains of the assembled protein. The barnase fragments were assembled into a functional cytotoxin via intein-mediated trans-splicing, thus leading to male sterility through pollen ablation. A total of 14 constructs carrying different combinations of introns and peptide linkers were transformed into wheat plants. The resulting populations (between 41 and 301 independent plants for each construct) were assayed for trait formation. Depending on which construct was used, there was an increase of up to fivefold in the proportion of plants exhibiting male sterility compared to the populations harboring unmodified constructs. Furthermore, the average barnase copy number in the plants displaying male sterility could be reduced. The metabolic profiles of male-sterile transgenic plants and non-transgenic plants were compared using gas chromatography–mass spectrometry. The profiles generated from leaf tissues displayed no differences, thus corroborating the anther specificity of barnase expression. The technical advances achieved in this study may be a valuable contribution for future improvement of transgenic crop systems.  相似文献   
8.
The Streptomyces phage phiC31 integrase was tested for its ability to excise transgenic DNA from the wheat genome by site-specific recombination. Plants that stably express phiC31 integrase were crossed to plants carrying a target construct bearing the phiC31 recognition sites, attP and attB. In the progeny, phiC31 recombinase mediates recombination between the att sites of the target locus, which results in excision of the intervening DNA. Recombination events could be identified in 34 independent wheat lines by PCR and Southern blot analysis and by sequencing of the excision footprints. Recombinant loci were inherited to the subsequent generation. The results presented here establish the integrase-att system as a tool for catalysing the precise elimination of DNA sequences from wheat chromosomes.  相似文献   
9.
We review up-to-date, open access remote sensing (RS) products related to forest. We created a hybrid forest/non-forest map using geographically weighted regression (GWR) based on a number of recent RS products and crowdsourcing. The hybrid map has spatial resolution of 230 m and shows the extent of forest in Russia in 2010. We estimate area of Russian forest as 711 million ha (in accordance with Russian national forest definition). Compared to official data of the State Forest Register (SFR), RS estimates the area of forest to be considerably larger in European part (+12.2 million ha or +8%) and smaller in Asian (–39.8 million ha or–7%) part of Russia. We report the changing forest area in 2001–2010 and discuss main drivers: wildfire and encroachment of abandoned arable land. The methodology used here can by applied for monitoring of forest cover and enhancing the forest accounting system in Russia.  相似文献   
10.
Cell-based therapies show promising results in cardiac function recovery mostly through paracrine-mediated processes (as angiogenesis) in chronic ischemia. In this study, we aim to develop a 2D (two-dimensional) in vitro cardiac hypoxia model mimicking severe cardiac ischemia to specifically investigate the prosurvival paracrine effects of adipose tissue-derived stromal vascular fraction (SVF) cell secretome released upon three-dimensional (3D) culture. For the 2D-cardiac hypoxia model, neonatal rat cardiomyocytes (CM) were cultured for 5 days at < 1% (approaching anoxia) oxygen (O2) tension. Typical cardiac differentiation hallmarks and contractile ability were used to assess both the cardiomyocyte loss of functionality upon anoxia exposure and its possible recovery following the 5-day-treatment with SVF-conditioned media (collected following 6-day-perfusion-based culture on collagen scaffolds in either normoxia or approaching anoxia). The culture at < 1% O 2 for 5 days mimicked the reversible condition of hibernating myocardium with still living and poorly contractile CM (reversible state). Only SVF-medium conditioned in normoxia expressing a high level of the prosurvival hepatocyte-growth factor (HGF) and insulin-like growth factor (IGF) allowed the partial recovery of the functionality of damaged CM. The secretome generated by SVF-engineered tissues showed a high paracrine potential to rescue the nonfunctional CM, therefore resulting in a promising patch-based treatment of specific low-perfused areas after myocardial infarction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号